Design of New Photosensitizers and Controlled Singlet Oxygen Generation for Photodynamic Therapy

Esra Tanrıverdi Eçik*, Onur Bulut, Hasan Huseyin Kazan, Elif Şenkuytu and Bünyemin

Çoşut

Figure S3: ¹³C NMR spectrum of compound

Figure S4: Mass spectrum of compound 6

Figure S5: ¹H NMR spectrum of compound 6

Figure S6: ¹³C NMR spectrum of compound 6

Figure S7: Absorbance spectrum of 5 in ethanol at different concentration.

Figure S8: Absorbance spectrum of 6 in ethanol at different concentration.

Figure S9: Fluorescence decay profiles of **5** and **6** in the presence using laser excitation source of 390 nm.

Figure S10 (a) Decrease in absorbance spectrum of trap molecule DBPF in the presence of RB (2.0 μ M) in ethanol. (b) Absorbance decrease of DPBF at 414 nm with time in ethanol in the presence of RB.

Figure S11. Absorbance spectrum of compound **5** (2.0 μ M) for photodegradation study in ethanol under the light source (Green Led, λ = 516 nm, 2.1 mW cm⁻²)

Figure S12. Absorbance spectrum of compound **6** (2.0 μ M) for photodegradation study in ethanol under the light source (Green Led, λ = 516 nm, 2.1 mW cm⁻²)

Figure S13. Decrease in absorbance spectrum of DPBF in the presence of compound 2 (2.0 μ M) in ethanol.

Figure S14. Decrease in absorbance spectrum of DPBF in the presence of compound 3 (2.0 μ M) in ethanol.