Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Asparagine Modified Downconversion NaGdF₄:Dy³⁺/Tb³⁺ Nanophosphor for Selective

and Sensitive Detection of Cu (II) Ion

Lobzang Tashi^a, Richa Singhaal^a, Zaib ul Nisa^a, Swaita Devi^a, Haq Nawaz Sheikh^{a*}

^aDepartment of Chemistry, University of Jammu, Baba Sahib Ambedkar Road, Jammu-180006, India

hnsheikh@rediffmail.com

(Supplementary Information)

Table of Contents

CONTENTS

1.	EDS	S2-S3
2.	FT-IR spectra	S4-S5
3.	Life time decay curve	
4.	quenching efficiency	
5.	PL spectra of Asp-NP in presence of different metal ions (Co ²⁺ , Hg ²⁺ ,	Zn ²⁺ , Mn ²⁺ ,
	Ni ²⁺ and Cu ²⁺)	S8-S13

Fig. S1 EDS spectra of (a) Dy^{3+} doped $NaGdF_4$ and Dy^{3+}/Tb^{3+} co-doped $NaGdF_4$ nanophosphors with different Tb^{3+} contents; (b) 3%. (c) 5% and (d) 10%.

Fig. S2 EDS spectra of Dy^{3+}/Tb^{3+} co-doped NaGdF₄ nanophosphors with different Tb^{3+} contents; (a) 10%, (b) 15% and (c) 20%.

Fig. S3 FTIR spectra of synthesized nanomaterials (a) $NaGF_4$, (b) $NaGF_4$:Dy³⁺ and (c-g) $NaGF_4$:Dy³⁺/Tb³⁺ with different Tb³⁺ contents; (c) 3%, (d) 5%, (e) 10%, (f) 15% and (g) 20%.

Fig. S4 FTIR spectra of $NaGF_4:Dy^{3+}/Tb^{3+}$ nanophosphor functionalized with asparagine amino acid.

Fig. S5 Photoluminescence decay curves of (a) NaGdF₄:Dy³⁺ and (b-f) NaGdF₄:Dy³⁺/Tb³⁺ with different Tb³⁺ contents; (b) 3%, (c) 5%, (d) 10%, (e) 15% and (f) 20%.

Fig. S6 Quenching efficiency of the nanostructure Aap-NP and different heavy metal ions (100 ppm) in aqueous solution.

Fig. S7 Photoluminescence spectra of Asp-NP after the addition of Cu^{2+} ion along with different concentrations of Co^{2+} ion.

Fig. S8 Luminescence spectra of Asp-NP after the addition of Cu^{2+} ion along with different concentrations of Hg^{2+} ion.

Fig. S9 Photoluminescence spectra of Asp-NP after the addition of Cu^{2+} ion along with different concentrations of Zn^{2+} ion.

Fig. S10 Photoluminescence spectra of Asp-NP after the addition of Cu^{2+} ion along with different concentrations of Mn^{2+} ion.

Fig. S11 Luminescence spectra of Asp-NP after the addition of Cu^{2+} ion along with different concentrations of Ni²⁺ ion.

Fig. S12 (a) Luminescence spectra of Asp-NP after the addition of Co^{2+} ion along with different concentrations of Cu^{2+} ion (from 100 to 150 ppm), (b) Nonlinear Stern-Volmer plot, (c) linear Stern-Volmer fitting and (d) error bar.