Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Computational study of 4, 4'- dimethoxy triphenylamine donor linked with low band gap π spacers by single and double bond for DSSC applications

Divya Unny^{1#}, Ganapathi Rao Kandregula^{1#}, Kothandaraman Ramanujam^{1, 2, 3}*

¹Department of Chemistry, Indian Institute of Technology Madras, Chennai, India, 600 036

²DST-IITM Solar Energy Harnessing Centre, Indian Institute of Technology Madras, Chennai, India, 600 036

³Potential Centre of Excellence: Advanced Centre for Energy Storage and Conversion, Indian Institute of Technology Madras, Chennai, India, 600 036

*Corresponding author's e-mail: <u>rkraman@iitm.ac.in</u>

[#]Equally Contributed

Content:

- 1. **Fig. S1** The dihedral angle obtained from ground state optimized structures of the dyes (TC1-TC5) obtained using B3LYP/6-311+G (d,p) method in DCM solvent
- 2. Fig. S2 The dihedral angle obtained from ground state optimized structures of the dyes (TC1"-TC5") obtained using B3LYP/6-311+G (d,p) method in DCM solvent
- 3. Fig. S3 Charge density difference calculation of dyes onto TiO_2 surface.
- 4. **Table S1** Ground state optimization followed by frequency calculations via different functional
- 5. **Table S2** The simulated absorption spectra parameters by TD-DFT calculations by different functionals and basis set

Fig. S1 The dihedral angle obtained from ground state optimized structures of the dyes (TC1"-TC5") obtained using B3LYP/6-311+G (d,p) method in dichloromethane solvent

Fig. S2 The dihedral angle obtained from ground state optimized structures of the dyes (TC1"-TC5") obtained using B3LYP/6-311+G (d,p) method in dichloromethane solvent

Fig S3. 3D charge density difference plot of the TC1-TC5 and TC1"-TC5" on TiO₂ surface.

Functional	Basis set	HOMO /eV	LUMO /eV	HOMO-LUMO Energy gap /eV
Experimental	NA	-5.08	-3.19	1.89
B3LYP	6-31G(d,p)	-4.76	-2.63	2.13
B3LYP	6-31+G(d,p)	-5.01	-2.93	2.08
B3LYP	6-311G(d,p)	-5	-2.81	2.19
B3LYP	6-311+G(d,p)	-5.07	-2.95	2.12
CAM-B3LYP	6-31G(d,p)	-6.02	-1.44	4.58
CAM-B3LYP	6-31+G(d,p)	-6.26	-1.77	4.49
CAM-B3LYP	6-311G(d,p)	-6.26	-1.63	4.63
CAM-B3LYP	6-311+G(d,p)	-6.32	-1.79	4.53
M06	6-31G(d,p)	-5.09	-2.49	2.6
M06	6-31+G(d,p)	-5.3	-2.76	2.54
M06	6-311G(d,p)	-5.32	-2.65	2.67
M06	6-311+G(d,p)	-5.37	-2.76	2.61
M06-2X	6-31G(d,p)	-5.96	-1.78	4.18
M06-2X	6-31+G(d,p)	-6.16	-2.05	4.11
M06-2X	6-311G(d,p)	-6.17	-1.95	4.22

Table S1 Ground state optimization followed by frequency calculations via different functional

M06-2X	6-311+G(d,p)	-6.22	-2.07	4.15
PBE1PBE	6-31G(d,p)	-5	-2.54	2.46
PBE1PBE	6-31+G(d,p)	-5.19	-2.79	2.4
PBE1PBE	6-311G(d,p)	-5.18	-2.68	2.5
PBE1PBE	6-311+G(d,p)	-5.23	-2.8	2.43
TPSSH	6-31G(d,p)	-4.44	-2.89	1.55
TPSSH	6-31+G(d,p)	-4.64	-3.14	1.5
TPSSH	6-311G(d,p)	-4.63	-3.03	1.6
TPSSH	6-311+G(d,p)	-4.68	-3.15	1.53
WB97XD	6-31G(d,p)	-6.6	-0.92	5.68
WB97XD	6-31+G(d,p)	-6.8	-1.19	5.61
WB97XD	6-31G(d,p)	-6.8	-1.07	5.73
WB97XD	6-31+G(d,p)	-6.85	-1.19	5.66

	Basis sets {Wavelength (nm) / oscillator strength}				
Functional	6-31G(d,p)	6-31+G(d,p)	6-311G(d,p)	6-311+G(d,p)	
(TC5)					
B3LYP	671/0.0355,	696/0.0443,	669/0.0439,	691/0.0491,	
	459/0.2209	471/0.2365	461/0.2428	472/0.2458	
CAM-B3LYP	398/0.4447	412/0.4646	403/0.482	413/0.4866	
M06	573/0.049,	589/0.0614,	568/0.066,	582/0.0728,	
	428/0.3263	439/0.3417	430/0.3541	439/0.3573	
M06-2X	406/0.3373	418/0.3657	410/0.3858	420/0.3929	
PBE1PBE	599/0.0436,	618/0.053,	598/0.0542,	614/0.0595,	
	431/0.2978	441/0.313	433/0.3212	441/0.3225	
TPSSH	844/0.0264,	874/0.0324,	837/0.0319,	864/0.0354,	
	507/0.1321	519/0.1444	507/0.1484	519/0.1517	
WB97XD	382/0.6524	392/0.6708	387/0.6756	394/0.6828	
Experimental	553				

Table S2 The simulated absorption spectra parameters by TDDFT calculations by different functionals and basis set