Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting information

Disposable electrode modified with metal orthovanadate and sulfur-reduced

graphene oxide for electrochemical detection of sulfasalazine

Umamaheswari Rajaji,^a Arya Nair J.S,^b Shen-Ming Chen,^{a,*} K. Y. Sandhya,^{b,*} Razan A.

Alshgari,^c Ting-Yu Jiang^{a,d}

^aDepartment of Chemical Engineering and Biotechnology, National Taipei University of

Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.

^bDepartment of Chemistry, Indian Institute of Space Science and Technology, Thiruvananthapuram, Kerala 695 547, India.

^{*c*}Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.

^dKorea University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Republic of Korea.

Corresponding Authors:

*SMC, E-mail: <u>umachemist24@gmail.com</u>, <u>smchen1957@gmail.com</u>; Tel.: +886-2-27017147; Fax.: +886-2-27025238. *KYS, E-mail: <u>sandhya@iist.ac.in</u>

EXPERIMENTAL SECTION

Reagents and Chemicals

Cerium (III) nitrate hexahydrate (Ce(NO₃)₃·6H₂O, ACS reagent, \geq 99.0%), NH₄VO₃, and other chemicals were bought from Sigma-Aldrich, USA. Potassium ferricyanide (K₃[Fe(CN)₆]), potassium ferrocyanide (K₄[Fe(CN)₆]), and potassium chloride (KCl) were analar grade commercial products, used as received. For those experiments in which supporting electrolyte was present, KCl was added to remain a 5.0 mM concentration. The electrolyte, 0.05 M phosphate buffer saline (PBS, pH 7.0) was prepared by mixing, sodium mono-hydrogen phosphate (Na₂HPO₄) and sodium dihydrogen phosphate (NaH₂PO₄) in an aqueous medium. The pH of the electrolyte solution was adjusted by using aqueous H₂SO₄ (0.5 M) and NaOH (2.0 M). The entire experiments were done with freshly prepared Milli-Q water (18.2 MQ cm⁻¹, specific resistivity) collected from Millipore Water System.

Characterizations

The nanostructure, composition and the morphological characterization of CVO@SRG composite was evaluated by the high resolution-transmission electron microscopy (HR-TEM) H-7600, Hitachi, (Japan). The chemical composition and elemental percentage were assessed through energy-dispersive X-ray (EDX) which affiliated with HR-TEM. The crystalline phase of as prepared samples was analyzed by X-ray diffraction (XRD) XPERT-PRO (PAN analytical B.V. The Netherlands) diffractometer with Cu M radiation (k = 1.54 Å). The oxidation state and the composition of the materials was scrutinized by X-ray photoelectron spectroscopy (XPS, Thermo ESCALAB 250 instrument).

Electrochemical Apparatus

The cyclic voltammetry (CV) and differential pulse voltammetry (DPV) experiments were carried out on a CHI 1205A analyzer electrochemical workstation (CH, USA). A conventional three-electrode system consisting of an Ag/AgCl (saturated KCl) electrode as the reference electrode, a platinum wire as the auxiliary electrode, and a CVO@SRG modified SPCE as the WE were used (Scheme 2).

SGR preparation

The graphene oxide (GO) was prepared by modified Hummers method from the graphite powder. Then, 10 mg of as-prepared GO was re-dispersed in 10 mL of de-ionized water and this suspension was ultrasonicated for 40 min. Further, the 5 mL of 1 M Na₂S was added to the suspension. Then, the reaction mixture was ultrasonicated for 2 h at 100 °C. Now the graphene oxide turned to S doped reduced graphene oxide sheets (SRG) and the SRG was separated by centrifugation.

CVO crystal structure information

Title $Ce O_4 V$

Lattice type I Space group name I 41/a m d Space group number 141 Setting number 1

Lattice parameters

a b c alpha beta gamma 7.34000 7.34000 6.47000 90.0000 90.0000 90.0000 Unit-cell volume = 348.575135 Å^3

Structure parameters

	Х	у	Z	Occ.	U	Site	Sym.
10 01	0.00000	0.19000	0.35000	1.000	0.020	16h	.m.
2 Ce Ce1	0.00000	0.00000	0.00000	1.000	0.020	4a	-4m2
3 V V1	0.00000	0.00000	0.50000	1.000	0.020	4b	-4m2

Number of polygons and unique vertices on isosurface = 0(0) 107 atoms, 144 bonds, 23 polyhedra; CPU time = 3 ms

Fig. S1. Optimization of the electrochemical experiments (A): effect of concentrations of nanocomposite, (B): effect of catalyst.

Fig. S2. (A-B) Optimization of the electrochemical experiments effect of pH.

Table 1. Analytical parameters for the determination of SSZ at CVO/SRG/SPCE with previous reports [14,17,19,32-36].

SbFE	Antinomy film electrode
BiNP-CNT	Bismuth nanoparticle carbon nanotube
	-
MWCNTCOOH	Functionalized multiwalled carbon nanotube
GO/Fe ₃ O ₄ @SiO ₂	Graphene oxide/magneticle nanoparticle at
	silicon dioxide
CD/RGO	Beta cyclodextrin –reduced graphene oxide
	composite
NiO	Nickel oxide nanoparticle

NiO/CNT	Nickel oxide-carbon nanotube nano		
	composite		
PtNPs/SWCNT	Platinum nanoparticles on single walled		
	carbon nanotube		