Supporting information

Reinforced Concrete Structure rGO/CNTs/ $\mathrm{Fe}_{2} \mathrm{O}_{3} /$ PEDOT:PSS Paper Electrode with excellent wettability and flexibility for Supercapacitors
 Jia Song ${ }^{\text {a,b }}$, Yan Sui ${ }^{\text {ab, }}$, Qi zhao ${ }^{\text {a }}$, Yuncheng Ye ${ }^{\text {a }}$, Chuanli Qin*a ${ }^{\text {, }}$, Xiaoshuang Chen ${ }^{\text {c }}$, Kun Song ${ }^{\text {c }}$

a. School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
b. Key Laboratory of Chemical Engineering Process \& Technology for Highefficiency Conversion, College of Heilongjiang Province, Harbin 150080, People's Republic of China
${ }^{\text {c. College }}$ of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar,161006, Heilongjiang, P. R. China

Experimental Procedures

Materials and Characterization

Ferric nitrate, methanol and ammonium hydroxide are purchased from Aladdin. Ethanol, vitriol, rGO are purchased from Tianjin recovery technology development Co., Ltd. (Tianjin, China). Poly(3,4-ethylenedioxothiophene) -poly(styrenesulfonate) (PEDOT: PSS) is purchased from Gold leaf electronics Co., Ltd. (Shenzhen, China). All chemicals used in this study are analytical grade. Powder XRD patterns are obtained on a Bruker D8 Focus (Germany) diffractometer using $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($\lambda=$ 0.15418 nm). Sample morphologies are observed by SEM using a Rigaku S-4300 (Rigaku, Tokyo, Japan) spectrometer with an energy dispersive spectrometer (EDS). The microscopic features of the samples are observed by TEM using a Rigaku H7650 electron microscope at 100 kV . HRTEM images are obtained using a Tecnai G2 transmission electron microscope (USA) operated at an accelerating voltage of 200 kV . X-ray photoelectron spectroscopy (XPS) measurements are recorded on an RBD upgraded PHI-5000C ESCA system (PerkinElmer) with Al K α radiation (hv = 1486 eV).

Elactrochemical Measurement

The $\mathrm{rGO} / \mathrm{CNTs} / \mathrm{Fe}_{2} \mathrm{O}_{3} /$ PEDOT:PSS composite paper is tailored and applied to working electrodes ($1 \mathrm{~cm} \times 1.5 \mathrm{~cm}$, effective worked area of $1 \mathrm{~cm} \times 1 \mathrm{~cm}$). A platinum foil (10 $\mathrm{mm} \times 10 \mathrm{~mm}$) is employed as the counter electrode and SCE (saturated calomel electrode) as reference electrode, which apply to a three-electrode system in 3 M KOH solution. The CHI 660D electrochemistry workstation is used to the electrochemical measurements. Cyclic voltammetry (CV) tests are conducted in a potential range of $-1-1 \mathrm{~V}$ (versus SCE) at scan rates of $10-100 \mathrm{mV} \cdot \mathrm{s}^{-1}$. The cycling behavior is particularly pronounced to 10000 cycles, and galvanostatic chargedischarge (GCD) tests are carried out at various current densities with a potential range of $0-2 \mathrm{~V}$ (versus SCE). EIS (Electrochemical impedance spectroscopy) is implemented to testify the capacitive property at OCV (open circuit voltage) with a frequency from 1 to $10^{5} \mathrm{~Hz}$.
The symmetric supercapacitors are assembled with $\mathrm{rGO} / \mathrm{CNTs} / \mathrm{Fe}_{2} \mathrm{O}_{3} /$ PEDOT: PSS composite paper as positive electrode and negative electrode. The two electrodes of the symmetric flexible supercapacitor are separated by a separator (NKK, MPF30AC100), and 3 M KOH is used as the electrolyte. The Formula for calculating the mass specific capacitance of a single electrode is $\mathrm{Cm}=\mathrm{I} \cdot \Delta \mathrm{t} / \mathrm{m} \cdot \Delta \mathrm{V}$ (F1) and the area specific capacitance of a single electrode is $\mathrm{Cs}=\mathrm{I} \cdot \Delta \mathrm{t} / \mathrm{s} \cdot \Delta \mathrm{V}(\mathrm{F} 2)$. The area ratio of two electrodes is decided in accordance with the charge balance equation ($\mathrm{q}^{+}=\mathrm{q}^{-}$). To achieve this, the area of the electrode materials is balanced in accordance with the equation: $\mathrm{Cs}=\mathrm{I} \cdot \Delta \mathrm{t} / 2 \mathrm{~s} \cdot \Delta \mathrm{~V}$ (F3) and the volume specific capacitance of a cell is $\mathrm{Cv}=$ $\mathrm{I} \cdot \Delta \mathrm{t} / \mathrm{v} \cdot \Delta \mathrm{V}$ (F4), this Cs is the area specific capacitance, Cv is the volume specific capacitance, I is current density, Δt is discharge time, s is area of electrode materials, v is volume of a cell and $\Delta \mathrm{V}$ is the voltage range of positive - negative voltage, respectively. The specific energy density E and power density P are defined as $\mathrm{E}=1 / 2$
$\mathrm{Cm}(\Delta \mathrm{V}){ }^{2}$ (F5) and $\mathrm{P}=\mathrm{E} / \Delta \mathrm{t}$ (F6).

Results and Discussion

Figure S1. TEM images of (a) PEDOT: PSS solution, (b) PEDOT: PSS film.

Figure S2. (a) Raman spectra and (b) FTIR spectra of rGO paper, rGO/PEDOT:PSS paper and rGO/CNTs/ $\mathrm{Fe}_{2} \mathrm{O}_{3} /$ PEDOT:PSS composite paper.

FigureS3. Impedance curve and fitting curve of $\mathrm{rGO} / \mathrm{CNTs} / \mathrm{Fe}_{2} \mathrm{O}_{3} /$ PEDOT:PSS composite paper

Figure S4. The cross section SEM and the corresponding elemental mapping images of $\mathrm{rGO} / \mathrm{CNTs} / \mathrm{Fe}_{2} \mathrm{O}_{3} /$ PEDOT:PSS paper.

Figure S5. (a, b) XPS and XRD patterns of $\mathrm{rGO} / \mathrm{CNTs} / \mathrm{Fe}_{2} \mathrm{O}_{3} /$ PEDOT:PSS paper before and after 10000 cycles.

Table1. Comparisons of specific capacitance, energy density and power density of PEDOT:PSS and rGO based supercapacitors.

Material	Specific capacitance	Energy Density	Power Density	Voltag e	Ref.
$\mathrm{Co}_{9} \mathrm{~S}_{8} / \mathrm{PEDOT}: \mathrm{PSS} / \mathrm{rGO}$	$788.9 \mathrm{Fg}^{-1}$ at $1 \mathrm{Ag} \mathrm{g}^{-1}$	19.6 $\mathrm{Wh} \mathrm{kg}^{-1}$	$400.9 \mathrm{~W} \mathrm{~kg}^{-1}$	1.6 V	20
$\mathrm{Ti}_{3} \mathrm{C}_{2} \mathrm{~T}_{\mathrm{x}} / \mathrm{rGO}$	$313 \mathrm{Fg}^{-1}$ at $1 \mathrm{Ag}^{-1}$	7.5 $\mathrm{Wh} \mathrm{kg}^{-1}$	$500 \mathrm{~W} \mathrm{~kg}^{-1}$	1.0 V	35
$\mathrm{VO}_{2}(\mathrm{~B}) / \mathrm{CNT} / \mathrm{rGO}$	$649.1 \mathrm{~F} \mathrm{~g} \mathrm{~g}^{-1}$ at $0.5 \mathrm{~A} \mathrm{~g}^{-1}$	$32.5 \mathrm{~Wh} \mathrm{~kg}^{-1}$	$3000 \mathrm{~W} \mathrm{~kg}^{-1}$	1.2 V	47
PEDOT:PSS@ $\mathrm{CoFe}_{2} \mathrm{O}_{4}$	181.3 F g ${ }^{-1}$ at $1 \mathrm{~A} \mathrm{~g}^{-1}$	25.17 $\mathrm{Wh} \mathrm{kg}^{-1}$	620.6 W kg ${ }^{-1}$	2.0 V	48
CNTs/PEDOT	$147 \mathrm{~F} \mathrm{~g}^{-1}$ at $0.5 \mathrm{~A} \mathrm{~g} \mathrm{~g}^{-1}$	12.6 Wh kg ${ }^{-1}$	$10200 \mathrm{~W} \mathrm{~kg}^{-1}$	1.4 V	49
rGO/PEDOT/PANI	$535 \mathrm{Fg} \mathrm{g}^{-1}$ at $1 \mathrm{Ag} \mathrm{g}^{-1}$	26.89 $\mathrm{Wh} \mathrm{kg}^{-1}$	$800 \mathrm{~W} \mathrm{~kg}^{-1}$	0.8 V	50
GP@NiO	$306.9 \mathrm{~F} \mathrm{~g}^{-1}$ at $0.5 \mathrm{~A} \mathrm{~g}^{-1}$	17.6 $\mathrm{Wh} \mathrm{kg}^{-1}$	$0.25 \mathrm{~kW} \mathrm{~kg}^{-1}$	1.0 V	51
rGO/ $\mathrm{Fe}_{2} \mathrm{O}_{3} / \mathrm{CNTs} /$ PEDOT:PSS	$997 \mathrm{Fg}^{-1}$ at $1 \mathrm{~A} \mathrm{~g}^{-1}$	35.6 $\mathrm{Wh} \mathrm{kg}^{-1}$	$166 \mathrm{~W} \mathrm{~kg}^{-1}$	1.6 V	This work

