Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting information

Reinforced Concrete Structure rGO/CNTs/Fe₂O₃/PEDOT:PSS Paper Electrode with excellent wettability and flexibility for Supercapacitors

Jia Song^{a,b}, Yan Sui^{a,b}, Qi zhao^a, Yuncheng Ye^a, Chuanli Qin^{*a}, Xiaoshuang Chen^c,

Kun Song^c

^{a.} School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China

^{b.} Key Laboratory of Chemical Engineering Process & Technology for Highefficiency Conversion, College of Heilongjiang Province, Harbin 150080, People's Republic of China

^cCollege of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar,161006, Heilongjiang, P. R. China

Experimental Procedures

Materials and Characterization

Ferric nitrate, methanol and ammonium hydroxide are purchased from Aladdin. Ethanol, vitriol, rGO are purchased from Tianjin recovery technology development Co., Ltd. (Tianjin, China). Poly(3,4-ethylenedioxothiophene) -poly(styrenesulfonate) (PEDOT: PSS) is purchased from Gold leaf electronics Co., Ltd. (Shenzhen, China). All chemicals used in this study are analytical grade. Powder XRD patterns are obtained on a Bruker D8 Focus (Germany) diffractometer using Cu K α radiation ($\lambda = 0.15418$ nm). Sample morphologies are observed by SEM using a Rigaku S-4300 (Rigaku, Tokyo, Japan) spectrometer with an energy dispersive spectrometer (EDS). The microscopic features of the samples are observed by TEM using a Rigaku H-7650 electron microscope at 100 kV. HRTEM images are obtained using a Tecnai G2 transmission electron spectroscopy (XPS) measurements are recorded on an RBD upgraded PHI-5000C ESCA system (PerkinElmer) with Al K α radiation (h $\nu = 1486$ eV).

Elactrochemical Measurement

The rGO/CNTs/Fe₂O₃/PEDOT:PSS composite paper is tailored and applied to working electrodes (1 cm× 1.5 cm, effective worked area of 1 cm × 1 cm). A platinum foil (10 mm × 10 mm) is employed as the counter electrode and SCE (saturated calomel electrode) as reference electrode, which apply to a three-electrode system in 3 M KOH solution. The CHI 660D electrochemistry workstation is used to the electrochemical measurements. Cyclic voltammetry (CV) tests are conducted in a potential range of -1–1 V (versus SCE) at scan rates of 10-100 mV·s⁻¹. The cycling behavior is particularly pronounced to 10000 cycles, and galvanostatic charge–discharge (GCD) tests are carried out at various current densities with a potential range of 0–2 V (versus SCE). EIS (Electrochemical impedance spectroscopy) is implemented to testify the capacitive property at OCV (open circuit voltage) with a frequency from 1 to 10^5 Hz.

The symmetric supercapacitors are assembled with rGO/CNTs/Fe₂O₃/PEDOT: PSS composite paper as positive electrode and negative electrode. The two electrodes of the symmetric flexible supercapacitor are separated by a separator (NKK, MPF30AC-100), and 3 M KOH is used as the electrolyte. The Formula for calculating the mass specific capacitance of a single electrode is $Cm = I \cdot \Delta t/m \cdot \Delta V$ (F1) and the area specific capacitance of a single electrode is $Cs = I \cdot \Delta t/s \cdot \Delta V$ (F2). The area ratio of two electrodes is decided in accordance with the charge balance equation (q+ = q-). To achieve this, the area of the electrode materials is balanced in accordance with the equation: $Cs = I \cdot \Delta t/2s \cdot \Delta V$ (F3) and the volume specific capacitance of a cell is $Cv = I \cdot \Delta t/v \cdot \Delta V$ (F4), this Cs is the area specific capacitance, Cv is the volume specific capacitance, I is current density, Δt is discharge time, s is area of electrode materials, v is volume of a cell and ΔV is the voltage range of positive - negative voltage, respectively. The specific energy density E and power density P are defined as E =1/2

Cm(Δ V) ²(F5) and P = E/ Δ t (F6). **Results and Discussion**

Figure S1. TEM images of (a) PEDOT: PSS solution, (b) PEDOT: PSS film.

Figure S2. (a) Raman spectra and (b) FTIR spectra of rGO paper, rGO/PEDOT:PSS paper and rGO/CNTs/Fe₂O₃/PEDOT:PSS composite paper.

FigureS3. Impedance curve and fitting curve of rGO/CNTs/Fe₂O₃/PEDOT:PSS composite paper

Figure S4. The cross section SEM and the corresponding elemental mapping images of rGO/CNTs/Fe₂O₃/PEDOT:PSS paper.

Figure S5. (a, b) XPS and XRD patterns of $rGO/CNTs/Fe_2O_3/PEDOT:PSS$ paper before and after 10000 cycles.

Table1. Comparisons of specific capacitance, energy density and power density of PEDOT:PSS

Material	Specific capacitance	Energy Density	Power Density	Voltag	Ref.
				e	
Co ₉ S ₈ /PEDOT:PSS/rGO	788.9 F g ⁻¹ at 1A g ⁻¹	19.6 Wh kg ⁻¹	400.9 W kg ⁻¹	1.6 V	20
Ti ₃ C ₂ T _x /rGO	313 F g^{-1} at 1 A g^{-1}	7.5 Wh kg ⁻¹	$500 \mathrm{~W~kg^{-1}}$	1.0 V	35
VO ₂ (B)/CNT/rGO	649.1 F g ⁻¹ at 0.5 A g ⁻¹	32.5 Wh kg ⁻¹	3000 W kg ⁻¹	1.2 V	47
PEDOT:PSS@CoFe2O4	181.3 F g ⁻¹ at 1 A g ⁻¹	25.17 Wh kg ⁻¹	620.6 W kg ⁻¹	2.0 V	48
CNTs/PEDOT	147 F g^{-1} at 0.5 A g^{-1}	12.6 Wh kg ⁻¹	$10200 \mathrm{~W~kg^{-1}}$	1.4 V	49
rGO/PEDOT/PANI	535 F g ⁻¹ at 1 A g ⁻¹	26.89 Wh kg ⁻¹	$800 \mathrm{~W~kg^{-1}}$	0.8 V	50
GP@NiO	306.9 F g^{-1} at 0.5 A g^{-1}	17.6 Wh kg ⁻¹	$0.25 \ kW \ kg^{-1}$	1.0 V	51
rGO/Fe ₂ O ₃ /CNTs/PEDOT:PSS	997 F g ⁻¹ at 1 A g ⁻¹	$35.6 \text{ Wh } \text{kg}^{-1}$	$166 \mathrm{~W~kg^{-1}}$	1.6 V	This work

and rGO based supercapacitors.