Ni-Catalyzed Cascade Coupling Reactions: Synthesis andthermally-activateddelayedfluorescence

characterization of quinazolinone derivatives

Lepeng Chen,^a Shou-Feng Zhang,^b Zhongyan Chen,^{*,a} Qianqian Zhen,^a Wenzhang Xiong,^a Yinlin Shao,^a Jing-Yuan Ge,^{*,a} Ningning Lv,^a and Jiuxi Chen^{*,a}

^a College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China

^b Department of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou, 545616, China

Contents

1 Genral Information	3
2. Preparation and Characterization of Reaction Substrates	3
3. Optimization of Reaction Conditions	4
4. Preparation and Characterization of 3 (3a as an example)	5
5. Mechanistic studies	6
6. Photophysical propeties	6
7. NMR Spectra of Compounds	8
8. X-ray crystallographic data for product 3a	40

1 Genral Information

All reagents were commercially available and used without further purification unless otherwise noted. Column chromatography purifications were carried out using 300-400 mesh silica gel with hexanes/ethyl acetate mixture as eluent. Melting points are uncorrected and recorded on Digital Melting Point Apparatus WRS-1B. 1H NMR and 13C NMR spectra were recorded on a 500 MHz spectrometer in solvents as indicated with tetramethylsilane (TMS) as an internal standard at room temperature. Chemical shifts are given in δ relative to TMS, the coupling constants J are given in Hz. Fluorescence spectra were determined by a HITACHI F-7000 fluorometer. Absorption spectra were recorded using a Perkin Elmer Lambda 35 spectrophotometer (USA). The transient photoluminescence decay curves were measured by Edinburgh Instruments.

2. Preparation and Characterization of Reaction Substrates

Scheme S1 General procedure for preparation of 2-benzoylquinazolin-4(3H)-one substrates.^[1]

To an oven dried 100 mL Schlenk bottle containing corresponding acetophenone (4 mmol) and I₂ (4.4 mmol) at room temperature, and then DMSO (10 mL) was added. The mixture was stirred at 100 °C. Subsequently, corresponding 2-aminobenzamide (4 mmol) in 6 mL DMSO was added dropwise to the above solution during 2 h. The reaction mixture was kept stirring at 100 °C for 12 h. After disappearance of the reactant (monitored by TLC), the reaction was quenched with saturated aqueous Na₂S₂O₃ and the resulting mixture was extracted with CH₂Cl₂ 3 times (100 mL ×3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated. 2-benzoylquinazolin-4(3H)-one substrates were obtained by column chromatography (silica gel, with a mixture of hexane/ethyl acetate as eluent).

^{1.} L. Long, Y-H. Wang, J-X. Zhuo, Z-C. Tu, R. Wu, M. Yan, Q. Liu, G. Lu. *Eur. J. Med. Chem.* 2018, **157**, 1361-1375.

Scheme S2 General procedure for preparation of 2-benzoylquinazolin-4(3H)-one substrates.^[2]

To an oven dried 10 mL Schlenk-tube, 2-benzoylquinazolin-4(3H)-one substrates (3 mmol), bromoacetonitrile (9 mmol), and DIPEA (7.5 mmol) were dissolved in 3 mL DMF. The mixture was heated at 70 °C for 12 h. After disappearance of the reactant (monitored by TLC), the reaction was quenched with water and the resulting mixture was extracted with ethyl acetate 3 times (30 mL \times 3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated. Corresponding products **1** were obtained by column chromatography (silica gel, with a mixture of hexane/ethyl acetate as eluent).

Scheme S3 preparation of 2-benzoyl-3-(2-oxo-2-phenylethyl)quinazolin-4(3H)-one

3. Optimization of Reaction Conditions

Table S1 Optimization of Reaction Conditions^a:

^{2.} S. N. Kulik, A. S. Kobko, A. A. Tolmachev, A. V. Tverdokhlebov, O. V. Shishkin, A. N. Chernega. *Synthesis* 2007, **10**, 1503-1508.

O N CN Ph 1a	+ PhB(OH) ₂ 2a	Ni(dppp)Cl₂ → Zn(OTf) ₂ , 2-MeTHF,	$ \begin{array}{c} $
Entry	At	Yeild (%) ^b	
1	Air		70
2	N ₂		72
3	O ₂		13

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), Ni catalyst (10 mmol%), Zn(OTf)₂ (2.0 equiv.), 2-MeTHF (1 mL), 90 °C, 24 h.

^b Isolated yield.

4. Preparation and Characterization of 3 (3a as an example)

Scheme S4 Synthesis of 3a.

To a 10 mL Schlenk-tube, 2-(2-benzoyl-4-oxoquinazolin-3(4H)-yl) acetonitrile **1a** (0.2 mmol), phenylboronic acid **2a** (0.4 mmol) in the presence of Ni(dppp)Cl₂ (5 mol%), Zn(OTf)₂ (3 eq) in CH₂Cl₂ (1 mL) at room temperature or 70 °C for 24 h. The reaction was quenched with saturated aqueous NaHCO₃ and the resulting mixture was extracted with CH₂Cl₂ 3 times (10 mL ×3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated. Corresponding products **3a** were obtained by column chromatography (silica gel, with a mixture of hexane/CH₂Cl₂ as eluent).

5. Mechanistic studies

Scheme S5 Control experiments

6. Photophysical propeties

Fig. S1 Normalized absorption (black) and fluorescence emission spectra (red) of **3a** in THF. Concentration: 10 μM, Excitation= 380 nm.

Fig. S2 Normalized delayed fluorescence (10 μ s delay) and prompt fluorescence spectra of **3a** in 2-MeTHF at 77 K. Concentration: 10 μ M, Excitation= 380 nm.

Fig. S3 (a)Temperature-responsive emission spectra of **3a** from 210 K to 330 K, Excitation= 380 nm; A correlation between the temperature and intensity of emission at 500 nm.

Fig. S4 Transient fluorescence decay of 3i at room temperature. Excited at 380 nm and monitored at 500 nm.

7. NMR Spectra of Compounds

1,3-diphenyl-6H-pyrazino[**2,1-b**]**quinazolin-6-one** (**3a**): Yellow solid (61.4 mg, 88%), mp:248-249 °C. ¹H NMR (500 MHz, CDCl₃): δ 9.02 (s, 1H), 8.52-8.49 (m, 1H), 8.45-8.43 (m, 2H), 8.13-8.11 (m, 2H), 7.91-7.86 (m, 2H), 7.62-7.50 (m, 6H), 7.43 (t, *J* = 7.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 158.4, 158.3, 147.3, 139.0, 137.1, 136.4, 135.5, 135.1, 131.0, 130.6, 129.1, 129.0, 128.7, 127.9, 127.3, 126.0, 117.4, 111.2. HRMS calcd for C₂₃H₁₆N₃O [M + H]⁺: 350.1288, found 350.1292.

1-phenyl-3-(o-tolyl)-6H-pyrazino[2,1-b]quinazolin-6-one (3b): Yellow solid (62.4 mg, 86%), mp:137-138 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.73 (s, 1H), 8.52-8.50 (m, 1H), 8.39-8.38 (m, 2H), 7.96-7.89 (m, 2H), 7.64-7.59 (m, 2H), 7.55-7.53 (m, 3H), 7.39-7.32 (m, 3H), 2.56 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 158.4, 158.0, 147.5, 139.4, 138.8, 136.8, 136.3, 136.0, 135.1, 131.2, 130.9, 130.5, 129.8, 129.0, 128.7, 127.9, 127.3, 127.2, 126.2, 117.6, 114.3, 20.9. HRMS calcd for C₂₄H₁₈N₃O [M+H]⁺: 364.1444, found 364.1441.

1-phenyl-3-(m-tolyl)-6H-pyrazino[2,1-b]quinazolin-6-one (3c): Yellow solid (62.4 mg, 86%), mp:246-247 °C. ¹H NMR (500 MHz, CDCl₃): δ 9.01 (s, 1H), 8.52-8.50 (m, 1H), 8.44-8.42 (m, 2H), 7.90-7.86 (m, 4H), 7.62-7.57 (m, 4H), 7.40 (t, *J* = 7.5 Hz, 1H), 7.24 (d, *J* = 7.5 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 158.4, 158.3, 147.4, 139.0, 138.7, 137.3, 136.4, 135.4, 135.1, 131.0, 130.5, 129.9, 128.9, 128.7, 127.9, 127.3, 126.7, 123.2, 117.4, 111.1, 21.6. HRMS calcd for C₂₄H₁₈N₃O [M+H]⁺: 364.1444, found 364.1447.

3-(4-(tert-butyl)phenyl)-1-phenyl-6H-pyrazino[2,1-b]quinazolin-6-one (3d): Yellow solid (62.4 mg, 77%), mp:232-233 °C.¹H NMR (400 MHz, CDCl₃): δ 9.01 (d, J = 1.6 Hz, 1H), 8.51 (d, J = 8.0 Hz, 1H), 8.45-8.43 (m, 2H), 8.06 (d, J = 6.8 Hz, 2H), 7.94-7.86 (m, 2H), 7.62-7.54 (m, 6H), 1.39 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 158.4, 158.2, 152.4, 147.4, 139.0, 137.3, 136.5, 135.0, 132.8, 131.0, 130.5, 128. 7, 127.9, 127.2, 126.0, 125.9, 117.4, 110.7, 34.8, 31.3. HRMS calcd for C₂₇H₂₄N₃O [M+H]⁺: 406.1914, found 406.1907.

3-(4-fluorophenyl)-1-phenyl-6H-pyrazino[2,1-b]quinazolin-6-one (3e): Yellow solid (61.7 mg, 84%), mp:260-261 °C.¹H NMR (400 MHz, CDCl₃): δ 8.98 (s, 1H), 8.51 (d, *J* = 7.6 Hz, 1H), 8.42-8.41 (m, 2H), 8.12-8.10 (m, 2H), 7.95-7.89 (m, 2H), 7.64-7.58 (m, 4H), 7.22-7.19 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 163.6 (d, *J*_{c-f}=248.8 Hz), 158.7, 158.5, 147.5, 139.1, 136.5, 135.3, 131.9, 131.8, 131.1, 130.8, 128.9, 128.1, 128.0, 127.5, 127.4, 117.6, 116.1 (d, *J*_{c-f}=21.3 Hz), 111.0. ¹⁹F NMR (376 MHz, CDCl₃): δ -

112.36- -112.44 (m, 1F). HRMS calcd for $C_{23}H_{14}FN_3NaO [M+Na]^+$: 390.1013, found 390.1023.

3-(4-chlorophenyl)-1-phenyl-6H-pyrazino[2,1-b]quinazolin-6-one (**3f**): Yellow solid (69.7 mg, 91%), mp:284-285 °C. ¹H NMR (500 MHz, CDCl₃): δ 9.03 (s, 1H), 8.52 (d, *J* = 8.0 Hz, 1H), 8.42 (d, *J* = 5.5 Hz, 2H), 8.08 (d, *J* = 8.5 Hz, 2H), 7.95-7.91 (m, 2H), 7.61-7.55 (m, 4H), 7.49 (d, *J* = 8.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 158.8, 158.5, 147.5, 139.1, 136.4, 136.2, 135.4, 135.3, 134.2, 131.1, 130.8, 129.3, 128.9, 128.1, 127.6, 127.4, 117.6, 111.4. HRMS calcd for C₂₃H₁₅ClN₃O [M+H]⁺: 384.0898, found 384.0886.

3-(4-bromophenyl)-1-phenyl-6H-pyrazino[2,1-b]quinazolin-6-one (**3g**): Yellow solid (77.7 mg, 91%), mp:257-258 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.02 (s, 1H), 8.51 (d, *J* = 8.2 Hz, 1H), 8.42-8.40 (m, 2H), 8.00 (d, *J* = 8.2 Hz, 2H), 7.95-7.88 (m, 2H), 7.65-7.63 (m, 3H), 7.58-7.57 (m, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 158.8, 158.5, 147.5, 139.1, 136.4, 136.2, 135.4, 134.7, 132.3, 131.1, 130.8, 128.9, 128.1, 127.7, 127.6, 127.5, 123.5, 117.6, 111.4. HRMS calcd for C₂₃H₁₅BrN₃O [M+H]⁺: 428.0393, found 428.0386.

3-(4-iodophenyl)-1-phenyl-6H-pyrazino[2,1-b]quinazolin-6-one (3h): Yellow solid (87.4 mg, 92%), mp:256-257 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.04 (s, 1H), 8.51 (d, J = 7.6 Hz, 1H), 8.42-8.40 (m, 2H), 7.95-7.83 (m, 6H), 7.65-7.57 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 158.6, 158.3, 147.3, 138.9, 138.1, 136.2, 136.1, 135.3, 135.1, 131.0, 130.7, 128.8, 128.0, 127.7, 127.5, 127.3, 117.4, 111.3, 95.2. HRMS calcd for C₂₃H₁₅IN₃O [M+H]⁺: 476.0254, found 476.0258.

1-phenyl-3-(4-(trifluoromethyl)phenyl)-6H-pyrazino[**2**,**1-b**]**quinazolin-6-one (3i):** Yellow solid (61.7 mg 74%), mp:184-185 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.07 (s, 1H), 8.50 (d, J = 8.0 Hz, 1H), 8.44-8.41 (m, 2H), 8.23 (d, J = 8.0 Hz, 2H), 7.95-7.88 (m, 2H), 7.76 (d, J = 8.4 Hz, 2H), 7.64-7.57 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 158.7, 158.3, 147.2, 139.0, 138.9, 136.1, 135.5, 135.3, 131.0, 130.8, 128. 8, 128.0, 127.5 (d, $J_{C-F} = 35.0$ Hz), 126.2, 125.9(q, $J_{C-F} = 3.8$ Hz), 124.1(d, $J_{C-F} = 270.0$ Hz), 117.5, 112.3. ¹⁹F NMR (376 MHz, CDCl₃): δ -62.59 (s, 3F). HRMS calcd for C₂₄H₁₅F₃N₃O [M+H]⁺: 418.1162, found 418.1163.

3-(naphthalen-2-yl)-1-phenyl-6H-pyrazino[2,1-b]quinazolin-6-one (3j): Yellow solid (59.9 mg, 75%), mp:266-267 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.11 (s, 1H), 8.64 (s, 1H), 8.52(d, *J* = 8.4 Hz, 1H), 8.48-8.47 (m, 2H), 8.16-8.14 (m, 1H), 7.95-7.84 (m, 5H), 7.63-7.60 (m, 4H), 7.53-7.46 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 158.4, 158.3, 147.3, 139.0, 136.9, 136.4, 135.1, 133.6, 133.5, 132.7, 131.1, 130.6, 128.7, 128.7,

128.0, 127.7, 127.3, 126.7, 126.6, 125.6, 123.2, 117.5, 111.4. HRMS calcd for $C_{27}H_{18}N_3O[M+H]^+$: 400.1444, found 400.1445.

8-methoxy-1,3-diphenyl-6H-pyrazino[2,1-b]quinazolin-6-one (3k): Yellow solid (67.5 mg, 89%), mp: 256-257°C. ¹H NMR (500 MHz, CDCl₃): δ 9.02 (s, 1H), 8.43-8.42 (m, 2H), 8.13 (d, *J* = 7.5 Hz, 2H), 7.86 (d, *J* = 9.0 Hz, 1H), 7.80 (s, 1H), 7.56 (m, 3H), 7.51 (m, 3H), 7.44 (m, 1H), 3.99 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 159.0, 158.4, 158.0, 142.3, 137.4, 137.1, 136.5, 135.7, 131.0, 130.5, 130.4, 129.0, 128.9, 127.9, 126.7, 126.1, 118.3, 111.1, 105.3, 56.0. HRMS calcd for C₂₄H₁₈N₃O₂ [M+H]⁺: 380.1394, found 380.1404.

8-fluoro-1,3-diphenyl-6H-pyrazino[2,1-b]quinazolin-6-one (3l): Yellow solid (55.8 mg, 76%), mp:255-256 °C. ¹H NMR (500 MHz, CDCl₃): δ 9.00 (s, 1H), 8.41 (d, J = 6.0 Hz, 2H), 8.12 (d, J = 7.5 Hz, 3H), 7.96-7.94 (m, 1H), 7.65-7.62 (m, 1H), 7.57-7.51 (m, 5H), 7.46-7.43 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 161.2 (d, $J_{C-F} = 248.8$ Hz), 158.6, 157.9, 144.3, 138.6, 137.7, 136. 5, 135.6, 131.5 (d, $J_{C-F} = 8.8$ Hz), 131.1, 130.8, 129.4, 129.2, 128.1, 126.3, 124.6 (d, $J_{C-F} = 25.0$ Hz), 118.6, 111.6 (d, $J_{C-F} = 25.0$ Hz), 111.0. ¹⁹F NMR (376 MHz, CDCl₃): δ -110.63 (td, J = 8.25, 4.95 Hz, 1F). HRMS calcd for C₂₄H₁₅FN₃O [M+H]⁺: 390.1013, found 390.1009.

9-methyl-1,3-diphenyl-6H-pyrazino[**2,1-b**]**quinazolin-6-one** (**3m**): Yellow solid (60.3 mg, 83%), mp:227-228 °C. ¹H NMR (500 MHz, CDCl₃): δ 9.00 (s, 1H), 8.44-8.42 (m, 2H), 8.38 (d, J = 8.0 Hz, 1H), 8.11 (d, J = 7.5 Hz, 2H), 7.71 (s, 1H), 7.57-7.56 (d, J = 4.9 Hz, 3H), 7.52-7.49 (m, 2H), 7.44-7.40 (m, 2H), 2.55 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 158.3, 147.6, 146.5, 139.3, 137.0, 136.6, 135.7, 131.9, 131.1, 130.6, 129.3, 129.1, 129.1, 128.2, 128.0, 127.1, 126.1, 115.3, 111.4, 22.2. HRMS calcd for C₂₄H₁₈N₃O [M+H]⁺: 364.1444, found 364.1449.

3-phenyl-1-(o-tolyl)-6H-pyrazino[2,1-b]quinazolin-6-one (3n): Yellow solid (56.6 mg, 78%), mp 214-215 °C. ¹H NMR (500 MHz, CDCl₃): δ 9.07 (s, 1H), 8.51 (d, *J* = 7.5 Hz, 1H), 8.09 (d, *J* = 7.5 Hz, 2H), 7.87-7.81 (m, 2H), 7.62-7.58 (m, 2H), 7.52-7.43 (m, 4H), 7.40-7.36 (m, 2H), 2.36 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 161.8, 158.4, 147.6, 139.3, 137.2, 137.1, 136.6, 135.4, 135.1, 130. 6, 130. 2, 129.4, 129.1, 129.0, 128.8, 127.3, 127.2, 126.1, 125.4, 117. 5, 111.4, 20.5. HRMS calcd for C₂₄H₁₈N₃O [M+H]⁺: 364.1444, found 364.1446.

3-phenyl-1-(p-tolyl)-6H-pyrazino[2,1-b]quinazolin-6-one (30): Yellow solid (59.5 mg, 82%), mp 245-246 °C. ¹H NMR (500 MHz, CDCl₃): δ 9.01 (s, 1H), 8.50 (d, *J* = 8.0 Hz, 1H), 8.37 (d, *J* = 8.0 Hz, 2H), 8.12 (d, *J* = 7.5 Hz, 2H), 7.94-7.86 (m, 2H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.51 (t, *J* = 7.5 Hz, 2H), 7.43 (t, *J* = 7.5 Hz, 1H), 7.37 (d, *J* = 8.0 Hz, 2H), 2.48 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 158.4, 158.2, 147.4, 140.9, 139.0, 137.1, 135.7, 135.0, 133.7, 131.0, 129.0, 128.9, 128.7, 127.2, 127.18, 126.1, 117.4, 110.9, 21.6. HRMS calcd for C₂₄H₁₈N₃O [M+H]⁺: 364.1444, found 364.1435.

1-(4-methoxyphenyl)-3-phenyl-6H-pyrazino[**2**,**1-b**]**quinazolin-6-one** (**3p**): Yellow solid (61.4 mg, 81%), mp 235-236 °C. ¹H NMR (500 MHz, CDCl₃): *δ* 8.97 (s, 1H), 8.54 (d, J = 9.0 Hz, 2H), 8.49 (d, J = 8.0 Hz, 1H), 8.11 (d, J = 8.0 Hz, 2H), 7.93 (d, J = 8.0 Hz, 1H), 7.87 (t, J = 8.0 Hz, 1H), 7.58 (t, J = 7.5 Hz, 1H), 7.50 (t, J = 7.5 Hz, 2H), 7.42 (t, J = 7.5 Hz, 1H), 7.07 (d, J = 9.0 Hz, 2H), 3.92 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): *δ* 161.7, 158.4, 157.2, 147.3, 139.0, 137.0, 135.7, 135.0, 132.8, 129.0, 128.97, 128.9, 128.6, 127.2, 127.1, 126.0, 117.4, 113.4, 110.5, 55.4. HRMS calcd for C₂₄H₁₈N₃O₂ [M+H]⁺: 380.1394, found 380.1395.

1-(4-fluorophenyl)-3-phenyl-6H-pyrazino[2,1-b]quinazolin-6-one (**3q**): Yellow solid (69.8 mg, 95%), mp 238-239 °C. ¹H NMR (500 MHz, CDCl₃): δ 9.01 (s, 1H), 8.54-8.49 (m, 3H), 8.10 (d, J = 7.5 Hz, 2H), 7.93-7.88 (m, 2H), 7.61 (t, J = 6.5 Hz, 1H), 7.51 (t, J = 7.5 Hz, 2H), 7.43 (t, J = 6.5 Hz, 1H), 7.23 (d, J = 8.5 Hz, 2H); ¹³C NMR

(125 MHz, CDCl₃): δ 164.5 (d, J_{C-F} = 250.0 Hz), 158.4, 157.1, 147.4, 139.0, 137.2, 135.6, 135.3, 133.4 (d, J_{C-F} = 7.5 Hz), 132.6 (d, J_{C-F} = 3.8 Hz), 129.3, 129.1, 128.7, 127.5, 127.4, 126.1, 117.6, 115.1(d, J_{C-F} = 21.3 Hz), 111.4. ¹⁹F NMR (376 MHz, CDCl₃): δ -109.66- -109.74 (m, 1F). HRMS calcd for C₂₃H₁₄FN₃NaO [M+Na]⁺: 390.1013, found 390.1024.

3-phenyl-1-(4-(trifluoromethyl)phenyl)-6H-pyrazino[2,1-b]quinazolin-6-one (3r): Yellow solid (35.9 mg, 43%), mp 313-314 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.06 (s, 1H), 8.57-8.51 (m, 3H), 8.10 (d, *J* = 7.6 Hz, 2H), 7.92 (s, 2H), 7.82 (d, *J* = 8.0 Hz, 2H), 7.65-7.62 (m, 1H), 7.53 (t, *J* = 7.2 Hz, 2H), 7.46 (d, *J* = 7.2 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 158.2, 157.1, 147.2, 139.6, 138.8, 137.2, 135.4, 135.2, 132.1 (d, *J*_{C-F} = 30.0 Hz), 131.3, 129.1, 128.6, 128.3 (d, *J*_{C-F} = 241.3 Hz), 127.6, 126.0, 124.8 (q, *J*_{C-F} = 3.8 Hz), 117.5, 111.9. ¹⁹F NMR (376 MHz, CDCl₃): δ -62.78 (s, 3F). HRMS calcd for C₂₄H₁₅F₃N₃O [M+H]⁺: 418.1162, found 418.1151.

3-phenyl-1-(thiophen-2-yl)-6H-pyrazino[2,1-b]quinazolin-6-one (3s): Yellow solid (46.9 mg, 66%), mp 246-247 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.87 (s, 1H), 8.80 (d, *J* = 4.0 Hz, 1H), 8.44 (d, *J* = 8.0 Hz, 1H), 8.07 (d, *J* = 7.5 Hz, 2H), 7.95 (d, *J* = 8.0 Hz, 1H), 7.87 (t, *J* = 7.5 Hz, 1H), 7.61 (d, *J* = 5.0 Hz, 1H), 7.56 (t, *J* = 7.5 Hz, 1H), 7.50 (t, *J* = 7.5 Hz, 2H), 7.42 (t, *J* = 7.5 Hz, 1H), 7.19 (t, *J* = 4.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 158.1, 151.4, 147.0, 139.3, 137.3, 136.9, 135.4, 135.1, 133.2, 133.0, 129.0,

128.9, 128.2, 127.7, 127.3, 127.1, 126.0, 117.6, 110.0. HRMS calcd for C₂₁H₁₄N₃OS [M+H]⁺: 356.0852, found 356.0851.

2-**benzoyl-3-(2-oxo-2-phenylethyl)quinazolin-4(3H)-one (4a):**White solid. ¹H NMR (400 MHz, CDCl₃): δ 8.37 (d, *J* = 8.0 Hz, 1H), 8.16 (d, *J* = 7.6 Hz, 2H), 7.93 (d, *J* = 7.6 Hz, 2H), 7.84-7.78 (m, 2H), 7.67-7.58 (m, 3H), 7.53-7.45 (m, 4H), 5.97 (s, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 192.6, 188.5, 161.5, 150.0, 146.0, 134.8, 134.5, 134.4, 134.2, 131.5, 128.9, 128.5, 128.4, 128.3, 128.1, 127.3, 121.8, 48.9.

Fig. S5 ¹H and ¹³C NMR spectra of 3a in CDCl₃.

Fig. S6 ¹H and ¹³C NMR spectra of 3b in CDCl₃.

Fig. S7 ¹H and ¹³C NMR spectra of 3c in CDCl₃.

Fig. S9 ¹H, ¹³C and ¹⁹F NMR spectra of 3e in CDCl₃.

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 6.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 fl (ppm)

Fig. S13 ¹H, ¹³C and ¹⁹F NMR spectra of 3i in CDCl₃.

Fig. S15 ¹H and ¹³C NMR spectra of 3k in CDCl₃.

Fig. S16 ¹H, ¹³C and ¹⁹F NMR spectra of 3l in CDCl₃.

30

Fig. S21 ¹H, ¹³C and ¹⁹F NMR spectra of 3q in CDCl₃.

Fig. S22 ¹H, ¹³C and ¹⁹F NMR spectra of **3r** in CDCl₃.

Fig. S24 ¹H and ¹³C NMR spectra of 4a in CDCl₃.

8. X-ray crystallographic data for product 3a

X-ray crystal structure 3a

X-ray diffraction data for **3a** (CCDC 2034501) were collected on a SMART APEX CCD diffractometer (graphite-monochromated MoK α radiation, ϕ - ω scan technique, $\lambda = 0.71073$ Å). The intensity data were integrated by means of the SAINT program. SADABS was used to perform area-detector scaling and absorption corrections. The structure was solved by direct methods and was refined against F^2 using all reflections with the aid of the SHELXTL package. All non-hydrogen atoms were found from the difference Fourier syntheses and refined anisotropically. The H atoms were included in calculated positions with isotropic thermal parameters related to those of the supporting carbon atoms but were not included in the refinement. All calculations were performed using the Bruker Smart program.