Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

SUPPORTING INFORMATION

Manuscript title: Allosteric binding properties of a 1,3-alternate thiacalix[4]arene-based receptor having phenylthiourea and 2-pyridylmethyl moieties on opposite faces

Author(s): Shofiur Rahman,^{*a,c*} Hirotsugu Tomiyasu,^{*a*} Chuan-Zeng Wang,^{*a,b*} Paris E. Georghiou,^{*c**} Abdullah Alodhayb,^{*d*} Cameron L. Carpenter-Warren,^{*e*} Mark R. J. Elsegood,^{*e*} Simon J. Teat,^{*f*} Carl Redshaw,^{*g*} and Takehiko Yamato^{*a**}

^{*a*} Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo–machi 1, Saga 840–8502 Japan, E–mail: <u>yamatot@cc.saga-u.ac.jp</u>

^b School of Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China

^c Department of Chemistry, Memorial University of Newfoundland St. John's, Newfoundland and Labrador A1B 3X7, Canada; E-mail: parisg@mun.ca

^d Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

^e Chemistry Department, Loughborough University, Loughborough, LE11 3TU, UK

^fALS, Berkeley Lab, 1 Cyclotron Road, Berkeley, CA 94720, USA

g Department of Chemistry, The University of Hull, Cottingham Road, Hull, Yorkshire, HU6 7RX, UK

Table of Contents (S1 to S18 are the page numbers)

- S1~S2 Title, authors and description of supporting information content
- S3~S8 ¹H NMR and ¹³C NMR spectra of all compounds 2, 3, 4 and 5a–5c (Figs. S1~S12)
- S9~S11 X-ray crystal structures of receptor 5a (Figs. S13~S17)
- S11 Scheme S1. Schematic representation of possible mechanism of the formation of 6 from 5a.
- S12 –Fig. S18. ¹H NMR spectroscopic stack plot of a CDCl₃–DMSO-d₆ (10:1, v/v) solution of 5b (4.0 × 10⁻³ M) upon addition of TBAF in CD₃CN. (Ka = 477± 14 M⁻¹) and the screen capture from the 1:1 global fit analysis using http://supramolecular.org.
- S13 –Fig. S19. ¹H NMR spectroscopic stack plot of a CDCl₃–DMSO-*d*₆ (10:1, v/v) solution of 5a (4.0 × 10⁻³ M) upon addition of TBAF in CD₃CN. ((*K*a = 250 ± 14 M⁻¹). and the screen capture from the 1:1 global fit analysis using http://supramolecular.org.
- **S14 Fig. S20.** ¹H NMR spectroscopic stack plot of a CDCl₃–DMSO- d_6 (10:1, v/v) solution of **5c** (4.0 × 10⁻³ M) upon addition of TBAF in CD₃CN.

Fig. S21. *Left*: UV–vis absorption spectra changes of **5c** (2.5 μ M) upon the addition of AcO⁻ ion (0–50 μ M) as its tetrabutylammonium salt in CH₂Cl₂–DMSO (10:1, v/v) at 298 K. *Right*: Job plot showing the 1:1 binding of **5c** to AcO⁻ ion from the UV-vis titration method at 358 nm in CH₂Cl₂–DMSO (10:1, v/v).

S15 – Fig. S22. Left: UV–vis absorption spectra changes of 5b (2.5 μM) upon the addition of F⁻ ion (0–50 μM) at 298 K as a TBAF salt in CH₂Cl₂–DMSO (10:1, v/v). Right: Job plot showing the 1:1 binding of 5b to F⁻ ion from the UV-vis titration method at 358 nm in CH₂Cl₂–DMSO (10:1, v/v).

Table S1. The DFT interaction energies Δ IE (kJ mol⁻¹) calculated from the geometry optimized structure of receptor L (**5a**: R= H; **5b**: R= F; and **5c**: R= NO₂) and complexes with the anions (F⁻, Cl⁻, AcO⁻, and H₂PO₄⁻) and cation Ag⁺ by using B3LYP/LANL2DZ basis set in gas phase, dichloromethane (DCM) and dimethyl sulfoxide (DMSO) solvent system.

- S16– Fig. S23. Geometry-optimized structures of receptor of receptor 5a (R= H) and complexes with the anions and Ag⁺ ion by using B3LYP/LANL2DZ basis set in gas phase.
- S17 Fig. S24. Geometry-optimized structures of receptor of receptor 5b and complexes with the anions and Ag⁺ ion in gas phase.
- S18 Fig. S25. Geometry-optimized structures of receptor of receptor 5c and complexes with the anions and Ag⁺ by using B3LYP/LANL2DZ basis set in gas phase.

S18-References

Figure S1. ¹H–NMR spectrum of 2 (300 MHz, CDCl₃, 293 K).

Figure S2. ¹³C–NMR spectrum of 2 (100 MHz, CDCl₃, 293 K).

Figure S3. ¹H–NMR spectrum of 3 (300 MHz, CDCl₃, 293 K).

Figure S4. ¹³C–NMR spectrum of 3 (100 MHz, CDCl₃, 293 K).

Figure S5. ¹H–NMR spectrum of 4 (300 MHz, CDCl₃, 293 K).

Figure S6. ¹³C–NMR spectrum of 4 (100 MHz, CDCl₃, 293 K).

Figure S7. ¹H–NMR spectrum of 5a (300 MHz, CDCl₃, 293 K).

Figure S9. ¹H–NMR spectrum of **5b** (300 MHz, CDCl₃–DMSO-*d*₆, 293 K).

Figure S10. ¹³C–NMR spectrum of **5b** (100 MHz, CDCl₃–DMSO-*d*₆, 293 K).

Figure S11. ¹H–NMR spectrum of **5c** (300 MHz, CDCl₃–DMSO-*d*₆, 293 K).

Figure S12. ¹³C–NMR spectrum of 5c (100 MHz, CDCl₃–DMSO-*d*₆, 293 K).

X-ray crystal structure of receptor 5a

Figure S13. The first thiacalizarene in the asymmetric unit with the chloroform solvent of crystallization, showing intramolecular C–H···N hydrogen bonding between opposing pyridine rings. Minor disorder components and H atoms not involved in H-bonding are omitted for clarity.

Figure S14. The second, modified, thiacalixarene in the asymmetric unit, showing intramolecular hydrogen between opposing pyridine groups and the charge-assisted $N-H^+\cdots Cl^-$ hydrogen bonding at the top of the figure. Most H atoms not involved in H-bonding are omitted for clarity.

Figure S15. Alternative view of the second thiacalixarene in the asymmetric unit, emphasizing the novel functional group at the top of the molecule exhibiting a delocalized positive charge, acting as a counter cation for Cl⁻ anion capture. H atoms not involved in H-bonding are omitted for clarity.

Figure S16. The asymmetric unit of **5a**, showing the intermolecular S \cdots H–N hydrogen bonding between the two thiacalixarenes and the N–H \cdots Cl interactions between each thiacalixarene and the Cl⁻ anion. Minor disorder components and H atoms not involved in H-bonding are omitted for clarity.

Figure S17. X-Ray crystal structure of **5a**, highlighting the capture of the Cl⁻ anion between three thiacalixarenes via N–H····Cl hydrogen bonding and the (disordered) chloroform solvent of crystallization. Minor disorder components and H atoms not involved in H-bonding are omitted for clarity.

Scheme S1. Schematic representation of possible mechanism of the formation of 6 from 5a in the presence of TBACl in CHCl₃.

5a (mol⁻¹)	F [−] (mol ⁻¹)	NH _a Proton (ppm)	NH _b Proton (ppm)
4.00E-03	0	8.050	7.600
4.00E-03	2.00E-03	10.090	8.420
4.00E-03	4.00E-03	11.550	9.100
4.00E-03	8.00E-03	12.750	9.820
4.00E-03	1.20E-02	13.300	10.415
4.00E-03	1.60E-02	13.800	10.750
4.00E-03	2.00E-02	13.850	10.810

Figure S18. ¹H NMR spectroscopic stack plot of a CDCl₃–DMSO- d_6 (10:1, v/v) solution of **5b** (4.0 × 10⁻³ M) upon addition of TBAF in CD₃CN. ($K_a = 477 \pm 14 \text{ M}^{-1}$) and the screen capture from the **1:1** global fit analysis using http://supramolecular.org.

5a (mol ⁻¹)	F ⁻ (mol⁻¹)	NH _a Proton	NH _b Proton	
		(ppm)	(ppm)	
4.00E-03	0	7.720	7.150	
4.00E-03	2.00E-03	8.800	7.550	
4.00E-03	4.00E-03	9.700	7.900	
4.00E-03	8.00E-03	10.500	8.640	
4.00E-03	1.20E-02	11.000	8.980	
4.00E-03	1.60E-02	11.250	9.340	
4.00E-03	2.00E-02	11.400	9.440	

Figure S19. ¹H NMR spectroscopic stack plot of a CDCl₃–DMSO- d_6 (10:1, v/v) solution of **5a** (4.0 × 10⁻³ M) upon addition of TBAF in CD₃CN. (($K_a = 250 \pm 14 \text{ M}^{-1}$). and the screen capture from the **1:1** global fit analysis using http://supramolecular.org.

Figure S20. ¹H NMR spectroscopic stack plot of a CDCl₃–DMSO- d_6 (10:1, v/v) solution of **5c** (4.0 × 10⁻³ M) upon addition of TBAF in CD₃CN.

Figure S21. *Left*: UV–vis absorption spectra changes of **5c** (2.5 μ M) upon the addition of AcO⁻ ion (0–50 μ M) as its tetrabutylammonium salt in CH₂Cl₂–DMSO (10:1, v/v) at 298 K. *Right*: Job plot showing the 1:1 binding of **5c** to AcO⁻ ion from the UV-vis titration method at 358 nm in CH₂Cl₂–DMSO (10:1, v/v).

Figure S22. *Left*: UV–vis absorption spectra changes of **5b** (2.5 μ M) upon the addition of F⁻ ion (0–50 μ M) at 298 K as a TBAF salt in CH₂Cl₂–DMSO (10:1, v/v). *Right*: Job's plot showing the 1:1 binding of **5b** to F⁻ ion from the UV-vis titration method at 358 nm in CH₂Cl₂–DMSO (10:1, v/v).

Table S1. The DFT interaction energies ΔIE (kJ mol⁻¹) calculated from the geometry optimized structure of receptors L (*For*: **5a**: R= H; **5b**: R= F; and **5c**: R= NO₂) and complexes with the anions (F⁻, Cl⁻, AcO⁻, and H₂PO₄⁻) and cation Ag⁺ using B3LYP/LANL2DZ basis set in gas phase, dichloromethane (DCM) and dimethyl sulfoxide (DMSO) solvent system using *Gaussian 16*¹ at the B3LYP level of DFT and the LANL2DZ basis set.².

Complex -	$\Delta IE (kJ mol^{-1})$ in gas phase			$\Delta IE (kJ mol^{-1})$ in DCM solvent			$\Delta IE (kJ mol^{-1})$ in DMSO solvent		
	5a (R= H)	5b (R=F)	5 c (R= NO ₂)	5a (R= H)	5b (R= F)	5 c (R= NO ₂)	5a (R= H)	5b (R= F)	5c (R= NO ₂)
L⊃F⁻	-484.91	-505.38	-551.35	-242.11	-249.53	-274.69	-206.34	-225.79	-231.55
L⊃Cl⁻	-296.45	-317.00	-362.33	-112.51	-118.86	-138.44	-82.87	-101.32	-100.61
L⊃AcO−	-294.52	-314.05	-361.34	-125.67	-132.34	-155.99	-95.96	-115.25	-104.33
L⊃H ₂ PO ₄ −	-268.66	-289.58	-339.47	-119.77	-126.41	-136.37	-91.63	-105.16	-101.83
$L \supset Ag^+$	-440.17	-436.59	-436.38	-	-	-	v	-	-
$L \supset Ag^+$	_	-435.64	-	-	-169.28	-	-	-146.90	-
Ag⁺⊂L⊃F⁻	-	-1090.11	-	v	-417.73	_	v	-364.91	-

Figure S23. Geometry-optimized (PBE0/LANL2DZ) structures of receptor **5a** (R= H) and complexes with the anions (b-e) (F^- , Cl^- , AcO^- , and $H_2PO_4^-$) and $Ag^+(f)$ ion by using B3LYP/LANL2DZ basis set in gas phase. Colour code: carbon atoms = green, oxygen atoms = red, nitrogen atoms = blue, and Ag^+ = magenta. F^- = purple; Cl^- = orange; Hydrogen atoms = white; phosphorus atom= light purple.

Figure S24. Geometry-optimized (PBE0/LANL2DZ) structures of receptor **5b** (R= F) and complexes with the anions (F⁻, Cl⁻, AcO⁻, and H₂PO₄⁻), Ag⁺ ion (c) and Cl⁻ in presence of Ag⁺ ion (d) by using B3LYP/LANL2DZ basis set in gas phase. Colour code: carbon atoms = green, oxygen atoms = red, nitrogen atoms = blue, and Ag⁺ = magenta. F⁻ = purple; Cl⁻ = orange; Hydrogen atoms = white; phosphorus atom= light purple.

Figure S25. Geometry-optimized (PBE0/LANL2DZ) structures of receptor **5c** ($R = NO_2$) and complexes with the anions (F^- , Cl^- , AcO^- , and $H_2PO_4^-$) and Ag^+ ion by using B3LYP/LANL2DZ basis set in gas phase. Colour code: carbon atoms = green, oxygen atoms = red, nitrogen atoms = blue, and Ag^+ = magenta. F^- = purple; Cl^- = orange; Hydrogen atoms = white; phosphorus atom= light purple.

References:

- 1. M. J. Frisch, et al., Gaussian 16, Revision C.01 Gaussian, Inc., Wallingford CT, 2019.
- (a) J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* 1996, 77, 3865; (b) J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* 1997, 78, 1396.