Supporting Information for

# Studies of cyanomethylcarbamoyl-bridged anthracene and pyrene fluorophores

Eyad A. Younes, <sup>\*a</sup> Maram J. Issa, <sup>a</sup> Maryam F. Abdollahi, <sup>b</sup>, Yuan-Fu Ding, <sup>c</sup> Anas J. Rasras, <sup>d</sup> Greta S. P. Mok, <sup>c</sup> Jian-Bin Lin<sup>e</sup>, and Yuming Zhao<sup>\*b</sup>

<sup>a</sup>Department of Chemistry, Faculty of science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan. Tel: +962 (5) 3903333 ext. 4572; E-mail: <u>e.younes@hu.edu.jo</u>

<sup>b</sup>Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X7. Fax: 1 709 864 3702; Tel: 1 709 864 8747; Email: <u>yuming@mun.ca</u>

<sup>c</sup>Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, University of Macau, Taipa, Macau, China

<sup>d</sup>Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan

<sup>e</sup>C-CART, CREAIT Network, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada

# **Table of Content**

| 1. | Synthetic Procedures for Compounds 2-3                         | <b>S-2</b> |
|----|----------------------------------------------------------------|------------|
| 2. | NMR Spectra of Compounds 2-3                                   | S-4        |
| 3. | UV-Vis Titrations of Compounds 2-3 with TBAF                   | S-12       |
| 4. | <sup>1</sup> H NMR Titrations of Compounds <b>2a</b> with TBAF | S-15       |
| 5. | High-Resolution Mass Spectra for Compounds 2-3                 | S-18       |
| 6. | Concentration-Dependent Fluorescence Behavior of 2 and 3       | S-22       |
| 7. | Detailed Results of DFT and TD-DFT Calculations                | S-26       |
| 8. | Crystallographic Data and Detailed Refinements for 2-3         | S-35       |

#### 1. Synthetic Procedures for Compounds 2-3



Scheme S-1 Stepwise synthetic procedures for compounds 2-3.

#### General Procedure for the synthesis of $\alpha$ -aminonitriles 5 and 7

 $\alpha$ -Aminonitriles **5** and **7** were prepared according to the literature procedure.<sup>1</sup> A cooled mixture of the corresponding aldehyde (1.0 mmol) in ammonium hydroxide (20 mL) and ethanol (10 mL) was stirred for 10 min. Sodium cyanide (NaCN) (0.050 g, 1.0 mmol) was added in small portions. Ammonium chloride (0.053 g, 1.0 mmol) was then added to the solution. The flask was securely stoppered and left under continuous stirring for 24 h at rt. The resulting product was extracted with chloroform (2 ×15 mL). The organic layers were combined and dried over anhydrous MgSO<sub>4</sub>. The organic solvent was removed under reduced pressure to give  $\alpha$ -aminonitriles as a solid.

**2-Amino-2-(anthracen-9-yl)acetonitrile (5).** 9-Anthracenecarboxaldehyde (0.21 g, 1.0 mmol) was reacted according to the general procedure, yielding compound **5** (0.18 g, 87%) as an orange solid. m.p. 143-145 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.57 (1 H, s), 8.50 (2 H, d, *J* =9.0), 8.10

<sup>&</sup>lt;sup>1</sup> Younes, E. A.; Hussein, N.; Shtaiwi, M.; Shahrokhi, F.; Safieh, K. A. A.; Zhao, Y. N-(Cyano(naphthalen-1-yl)methyl)benzamides: Synthesis, Crystal Structures, and Colorimetric Sensing of Fluoride Anions. *New J. Chem.* **2020**, *44*, 16546-16556.

(2 H, d, J = 8.5), 7.68 (2 H, ddd, J = 9.0, 6.6, 1.4), 7.60 -7.53 (2 H, m), 6.41 (1 H, s), 3.75 (1 H, q, J = 7.0), 2.31 (1 H, s) ppm; <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  131.63, 130.06, 129.81, 128.92, 127.46, 125.32, 122.94, 121.41, 40.93 ppm; HRMS (APPI-TOF, negative mode) m/z calcd. for C<sub>16</sub>H<sub>12</sub>N<sub>2</sub> 232.1000; found 232.0999 [M]<sup>+</sup>.

**2-Amino-2-(pyren-1-yl)acetonitrile (7).** 1-Pyrenecarboxaldehyde (0.23g, 1.0 mmol) was reacted according to the general procedure, yielding compound **7** (0.21g, 91%) as yellow solid. m.p. 116-119 °C; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  8.51 (1 H, d, *J* = 9.3), 8.43- 8.27 (5 H, m), 8.28- 8.18 (2 H, m), 8.13 (1 H, t, *J* = 7.6), 6.09 (1 H, s), 3.13 (2 H, d, *J* = 7.2) ppm; <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  131.78, 131.37, 131.22, 130.61, 128.49, 128.25, 127.83, 127.76, 127.00, 126.19, 126.05, 125.41, 125.32, 124.55, 124.21, 123.36, 122.87, 44.70 ppm; HRMS (APPI-TOF, positive mode) m/z calcd. for C<sub>18</sub>H<sub>14</sub>N<sub>2</sub> 256.1000; found 256.0994 [M]<sup>+</sup>.

#### General procedure for acylation reaction

To a solution of (1.0 mmol) acyl chloride in dry THF (15 mL) at 0 °C were added  $\alpha$ -aminonitrile (1.0 mmol) and then triethylamine (1.0 mL). The resulting mixture was allowed to be slowly warmed up to room temperature and stirred for 3 h. The white precipitate of triethylammonium chloride was then removed by suction filtration. The solution was subjected to evaporation under reduced pressure, and the resulting crude solid product was purified by recrystallization from ethanol/water to afford pure acylated product.

N-(anthracen-9-yl(cyano)methyl)benzamide (2a). Benzoyl chloride (0.14 g, 1.0mmol) and 2-amino-2-(anthracen-9-yl)acetonitrile (5) (0.23g, 1.0 mmol) were reacted according to the general procedures, yielding compound 2a (0.10g, 70%) as an orange solid.

*N*-(anthracen-9-yl(cyano)methyl)-2-naphthamide (2b). 1-Naphthoyl chloride (0.19 g, 1.0mmol) and 2-amino-2-(anthracen-9-yl)acetonitrile (5) (0.23 g, 1.0 mmol) were reacted according to the general procedures, yielding compound 2b (0.42g, 90%) as an white solid.

*N*-(cyano(pyren-1-yl)methyl)benzamide (3a). Benzoyl chloride (0.14 g, 1.0 mmol) and 2-amino-2-(pyren-1-yl)acetonitrile (7) (0.26g, 1.0 mmol) were reacted according to the general procedures, yielding compound 3a (0.24, 63%) as a pale yellow solid.

N-(cyano(pyren-1-yl)methyl)-2-naphthamide (3b). 1-Naphthoyl chloride (0.19 g, 1.0 mmol) and 2-amino-2-(pyren-1-yl)acetonitrile (7) (0.26g, 1.0 mmol) were reacted according to the general procedures, yielding compound 3b (0.13 g, 52%) as a white solid.

# 2. NMR Spectra of Compounds 2-3



Fig. S-1 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 2a.



Fig. S-2 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of compound 2a.

# 



Fig. S-3 <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrum of compound 2b.



Fig. S-4 <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectrum of compound 2b.



**Fig. S-5** <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) spectrum of compound **3a**.



Fig. S-6  $^{13}$ C NMR (100 MHz, DMSO- $d_6$ ) spectrum of compound 3a.



**Fig. S-7** <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) spectrum of compound **3b**.



**Fig. S-8**  $^{13}$ C NMR (100 MHz, DMSO- $d_6$ ) spectrum of compound **3b**.

## 3. UV-Vis Titrations of Compounds 2-3 with TBAF



**Fig. S-9** UV-Vis absorption spectra monitoring the titration of **2a**  $(5.55 \times 10^{-5} \text{ M})$  with TBAF (from 0 to 65.1 equivalents) in DMSO. The arrow indicates the trend of increasing titration.



**Fig. S-10** UV-Vis absorption spectra monitoring the titration of **2b**  $(2.42 \times 10^{-5} \text{ M})$  with TBAF (from 0 to 211 equivalents) in DMSO. The arrow indicates the trend of increasing titration.



**Fig. S-11** UV-Vis absorption spectra monitoring the titration of **3a** ( $1.66 \times 10^{-5}$  M) with TBAF (from 0 to 120 equivalents) in DMSO. The arrow indicates the trend of increasing titration.



**Fig. S-12** Plots of absorbance change against molar equivalent of TBAF during the titration of **3a**  $(1.66 \times 10^{-5} \text{ M})$  with TBAF (from 0 to 120 equivalents) in DMSO. (A) at 347 nm, (B) at 368 nm. A<sub>0</sub> is the absorbance measured before titration, and A is the absorbance measured during the titration.



**Fig. S-13** UV-Vis absorption spectra monitoring the titration of **3b**  $(1.45 \times 10^{-5} \text{ M})$  with TBAF (from 0 to 123 equivalents) in DMSO. The arrow indicates the trend of increasing titration.



**Fig. S-14** Plots of absorbance change against molar equivalent of TBAF during the titration of **3b**  $(1.45 \times 10^{-5} \text{ M})$  with TBAF (from 0 to 123 equivalents) in DMSO. (A) at 347 nm, (B) at 368 nm. A<sub>0</sub> is the absorbance measured before titration, and A is the absorbance measured during the titration.

#### 4. <sup>1</sup>H NMR Titrations of Compounds 2a with TBAF

To understand the interactions of compounds 2 and 3 with fluoride anion in the solution phase, <sup>1</sup>H NMR titration experiment of 2a with TBAF in acetone- $d_6$  was conducted. As shown in Fig. S-15, the aromatic region of 2a was monitored during the titration process. Assignments of the amido N-H and various aromatic (phenyl and anthryl) protons in 2a are given in Scheme S-2.



**Fig. S-15** <sup>1</sup>H NMR (400 MHz, acetone- $d_6$ ) spectra monitoring the titration of **2a** ( $1.7 \times 10^{-3}$  M) with TBAF. TBAF was added from 0.00 to 2.50 molar equiv (from bottom to top), and 0.125 molar equiv of TBAF was added in each step.



Scheme S-2 Stepwise interactions of 2a with fluoride anion in the solution phase.

The <sup>1</sup>H NMR titration results are in agreement with the two steps shown in Scheme S-2. In the first step, a hydrogen-bonded complex  $[2a + F]^{-}$  is formed, resulting in immediate dissapearance of the amido NH signal and significant shifts of other aromatic proton signals. The NMR patterns confirm that this step is a rapid equilibrium process. With increasing addition of TBAF, a new set of proton signals (highlighted by red color in Fig. S-15) emerge with increasing intensity, but no significant shifts in their resonance frequencies. These signals can be assigned to the deprotonation step illustrated in Scheme S-2, resulting in a deprotonated anion of **2a**. This assignment is further evidenced by the <sup>1</sup>H NMR titration experiment of **2a** with NaOH carried out in DMSO- $d_6$ . Herein, DMSO-d<sub>6</sub> was chosen as the solvent in consideration of the solubility of NaOH. As shown in Fig. S-16, after addition of more than 3.50 molar equiv of base (NaOH) into the solution of 2a, the <sup>1</sup>H NMR spectrum is significantly changed into a new spectral pattern that bears resemblance to the pattern observed at the end stage of the fluoride titiration (see Fig. S-15). Overall, our NMR titration results concur with the UV-Vis and fluorescence titration data, confirming that two steps take place when the cyanomethylcarbamoyl bridge of 2a is interacting with fluroide anion. This mechaism should be operative in the cases of 2b, and 3a/b as well, given that they contain the same cyanomethylcarbamoyl bridge in their molecular structures.



**Fig. S-16** <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) spectra monitoring the titration of **2a** ( $1.7 \times 10^{-3}$  M) with NaOH. NaOH was added from 0.00 to 4.00 molar equiv (from bottom to top), and 0.50 molar equiv of NaOH was added in each step.

# 5. High-Resolution Mass Spectra for Compounds 2-3





Fig. S-17 High-resolution mass spectrum (APPI-TOF, positive mode) of compound 2a.

#### **Qualitative Compound Report**



Fig. S-18 High-resolution mass spectrum (APPI-TOF, positive mode) of compound 2b.

#### **Qualitative Compound Report**



Fig. S-19 High-resolution mass spectrum (APPI-TOF, positive mode) of compound 3a.

#### **Qualitative Compound Report**



Fig. S-20 High-resolution mass spectrum (APPI-TOF, positive mode) of compound 3b.

### 6. Concentration-Dependent Fluorescence Behavior of 2 and 3



Fig. S-21 Normalized fluorescence spectra of 2a measured in  $CH_2Cl_2$  at different concentrations ( $\lambda_{ex} = 345 \text{ nm}$ ).



Fig. S-22 Excitation spectrum of 2a ( $6.24 \times 10^{-5}$  M in CH<sub>2</sub>Cl<sub>2</sub>) monitoring the emission at 350 nm.



Fig. S-23 Normalized fluorescence spectra of 2b measured in  $CH_2Cl_2$  at different concentrations ( $\lambda_{ex} = 345 \text{ nm}$ ).



Fig. S-24 Excitation spectrum of 2b  $(3.75 \times 10^{-5} \text{ M in CH}_2\text{Cl}_2)$  monitoring the emission at 350 nm.



Fig. S-25 Normalized fluorescence spectra of 3a measured in  $CH_2Cl_2$  at different concentrations ( $\lambda_{ex} = 345 \text{ nm}$ ).



Fig. S-26 Excitation spectrum of 3a ( $5.82 \times 10^{-5}$  M in CH<sub>2</sub>Cl<sub>2</sub>) monitoring the emission at 380 nm.



Fig. S-27 Normalized fluorescence spectra of 3b measured in  $CH_2Cl_2$  at different concentrations ( $\lambda_{ex} = 345 \text{ nm}$ ).



Fig. S-28 Excitation spectrum of 3b ( $2.55 \times 10^{-5}$  M in CH<sub>2</sub>Cl<sub>2</sub>) monitoring the emission at 380 nm.

# 7. Detailed Results of DFT and TD-DFT Calculations

Cartesian coordinates and optimized **2a** in gas phase: E(RB3LYP) = -1071.090425 hartees; Dipole Moment = 5.911315 Debye; Basis Set = 6-311+G(d,p).

| 0 | -2.12340 | -1.79460 | 1.25280  |
|---|----------|----------|----------|
| N | -1.19620 | 0.22790  | 0.78700  |
| Н | -1.20810 | 1.01790  | 0.16100  |
| Ν | 0.36160  | 1.25680  | 3.68820  |
| С | -2.20880 | -0.70150 | 0.71240  |
| С | -3.41900 | -0.29240 | -0.07370 |
| С | -3.78490 | 1.04400  | -0.27390 |
| H | -3.20440 | 1.84740  | 0.16560  |
| С | -4.93060 | 1.35630  | -1.00190 |
| Н | -5.21370 | 2.39330  | -1.14160 |
| С | -5.71660 | 0.33790  | -1.53780 |
| Н | -6.60700 | 0.58230  | -2.10590 |
| С | -5.36180 | -0.99570 | -1.33280 |
| Н | -5.97530 | -1.78990 | -1.74260 |
| С | -4.22390 | -1.31000 | -0.59770 |
| Н | -3.94220 | -2.33950 | -0.41540 |
| С | 0.06260  | -0.10020 | 1.45440  |
| Н | -0.07600 | -1.12460 | 1.79550  |
| С | 0.23590  | 0.68240  | 2.69610  |
| С | 1.27300  | -0.02610 | 0.52330  |
| С | 1.90220  | -1.22540 | 0.11160  |
| С | 1.47290  | -2.53650 | 0.50400  |
| Н | 0.59570  | -2.66570 | 1.12340  |
| С | 2.13190  | -3.66010 | 0.08590  |
| Н | 1.77470  | -4.63420 | 0.40000  |
| С | 3.27130  | -3.57210 | -0.75910 |
| H | 3.78030  | -4.47590 | -1.07340 |
| С | 3.70890  | -2.34840 | -1.17580 |
| Н | 4.57020  | -2.26150 | -1.82960 |
| С | 3.04670  | -1.14890 | -0.76930 |
| С | 3.48790  | 0.09420  | -1.22040 |
| H | 4.34390  | 0.14000  | -1.88640 |
| С | 2.85540  | 1.27970  | -0.84690 |
| С | 3.30850  | 2.54140  | -1.34020 |
| H | 4.15970  | 2.55310  | -2.01280 |
| С | 2.69080  | 3.70480  | -0.97980 |
| H | 3.04270  | 4.65650  | -1.36060 |
| С | 1.58250  | 3.66600  | -0.09160 |
| H | 1.10360  | 4.59220  | 0.20520  |
| С | 1.12010  | 2.47750  | 0.40580  |
| H | 0.29500  | 2.50410  | 1.10490  |
| С | 1.72680  | 1.22800  | 0.05140  |

Cartesian coordinates and optimized **2b** in gas phase: E(RB3LYP) = -1224.764192 hartees; Dipole Moment = 5.797833 Debye; Basis Set = 6-311+G(d,p).

| 0       | -1.48850 | 0.89940  | 1.93780  |
|---------|----------|----------|----------|
| Ν       | -0.31560 | -0.79490 | 0.97800  |
| Н       | -0.30460 | -1.47700 | 0.23550  |
| Ν       | 1.78120  | -2.05330 | 3.40630  |
| С       | -1.47090 | -0.08290 | 1.21050  |
| C       | -2 68800 | -0 62970 | 0 52040  |
| C       | -2 92050 | -1 99130 | 0.55630  |
| U<br>U  | -2 22640 | -2 64030 | 1 07810  |
| П       | -2.22040 | -2.04030 | 1.07010  |
| C II    | -4.07190 | -2.55360 | -0.03470 |
| H       | -4.23580 | -3.62320 | 0.02550  |
| С       | -4.97690 | -1.74450 | -0.67390 |
| Η       | -5.86330 | -2.16810 | -1.13450 |
| С       | -4.77860 | -0.34100 | -0.74260 |
| С       | -5.70800 | 0.49790  | -1.41200 |
| Н       | -6.57820 | 0.04380  | -1.87420 |
| С       | -5.51240 | 1.85520  | -1.47710 |
| Н       | -6.22870 | 2.48630  | -1.99070 |
| С       | -4.37420 | 2.43250  | -0.87070 |
| H       | -4.22700 | 3.50540  | -0.92200 |
| C       | -3 45430 | 1 65160  | -0.21150 |
| U<br>U  | -2 60070 | 2 10890  | 0.26810  |
| II<br>C | -3 62380 | 2.10000  | -0 12610 |
| C       | -3.02300 | 0.24300  | -0.12010 |
|         | 0.95560  | -0.36990 | 1.30110  |
| H       | 0.70050  | 0.52590  | 2.12450  |
| С       | 1.42/60  | -1.32940 | 2.58110  |
| С       | 2.01770  | -0.03440 | 0.51350  |
| С       | 2.39070  | 1.31660  | 0.31540  |
| С       | 1.83570  | 2.42180  | 1.04210  |
| Н       | 1.05710  | 2.26260  | 1.77550  |
| С       | 2.24780  | 3.70660  | 0.81630  |
| Н       | 1.80260  | 4.51570  | 1.38410  |
| С       | 3.24450  | 3.99890  | -0.15380 |
| Н       | 3,55800  | 5.02410  | -0.31250 |
| C       | 3 79260  | 2 98430  | -0 88360 |
| н       | 4 54800  | 3 18830  | -1 63500 |
| C C     | 3 38850  | 1 62810  | -0 68440 |
| C       | 3 9/130  | 0 60250  | -1 //000 |
|         | 3.94130  | 0.00230  | -1.44990 |
| H       | 4.68400  | 0.84800  | -2.20260 |
| C       | 3.56230  | -0.72890 | -1.28040 |
| С       | 4.12650  | -1.76210 | -2.08960 |
| H       | 4.85860  | -1.48330 | -2.84000 |
| С       | 3.75800  | -3.06710 | -1.92830 |
| Н       | 4.19200  | -3.84300 | -2.54810 |
| С       | 2.80350  | -3.40990 | -0.93320 |
| Н       | 2.52460  | -4.44840 | -0.79630 |
| С       | 2.24170  | -2.44940 | -0.13610 |
| Н       | 1.54600  | -2.76600 | 0.62940  |
| С       | 2.58590  | -1.06460 | -0.27190 |

Cartesian coordinates and optimized **3a** in gas phase: E(RB3LYP) = -1147.353813 hartees; Dipole Moment = 5.707460 Debye; Basis Set = 6-311+G(d,p).

| 0 | -2.89720 | -0.11380 | -1.97140 |
|---|----------|----------|----------|
| Ν | -2.13640 | 0.99280  | -0.14230 |
| Н | -2.28550 | 1.22080  | 0.82850  |
| Ν | -2.04040 | 4.26040  | -1.09760 |
| С | -2.95570 | 0.08440  | -0.76570 |
| С | -3.91620 | -0.65350 | 0.11910  |
| С | -3.69100 | -0.86840 | 1.48410  |
| Н | -2.77790 | -0.52280 | 1.95620  |
| С | -4.61910 | -1.57460 | 2.24560  |
| Н | -4.43120 | -1.74740 | 3.29900  |
| С | -5.78000 | -2.06640 | 1.65170  |
| Н | -6.50340 | -2.61280 | 2.24630  |
| С | -6.00490 | -1.86260 | 0.29010  |
| Н | -6.90450 | -2.24860 | -0.17560 |
| С | -5.07410 | -1.16770 | -0.47470 |
| Н | -5.22570 | -1.01250 | -1.53560 |
| С | -1.16280 | 1.79220  | -0.88610 |
| Н | -1.16530 | 1.37800  | -1.89750 |
| С | -1.64310 | 3.18160  | -1.01180 |
| С | 0.23550  | 1.70890  | -0.27650 |
| С | 0.71880  | 2.74670  | 0.52050  |
| Н | 0.11430  | 3.63500  | 0.66440  |
| С | 1.96990  | 2.67640  | 1.12080  |
| Н | 2.32150  | 3.50050  | 1.73170  |
| С | 2.78720  | 1.55530  | 0.94020  |
| С | 4.08590  | 1.45470  | 1.54530  |
| Н | 4.43090  | 2.27890  | 2.16050  |
| С | 4.86930  | 0.36170  | 1.35680  |
| Н | 5.84840  | 0.30110  | 1.82020  |
| С | 4.42900  | -0.73710 | 0.54390  |
| С | 5.22180  | -1.87450 | 0.33550  |
| Н | 6.19960  | -1.92890 | 0.80210  |
| С | 4.76890  | -2.92480 | -0.45840 |
| Н | 5.39690  | -3.79560 | -0.60810 |
| С | 3.51680  | -2.86380 | -1.06070 |
| Н | 3.16860  | -3.68450 | -1.67870 |
| С | 2.68880  | -1.74530 | -0.88020 |
| С | 1.39400  | -1.64450 | -1.48470 |
| Н | 1.04690  | -2.46530 | -2.10350 |
| С | 0.60120  | -0.55490 | -1.30080 |
| Н | -0.37050 | -0.53460 | -1.77790 |
| С | 1.02720  | 0.55530  | -0.49030 |
| С | 2.31540  | 0.48180  | 0.12620  |
| С | 3.14270  | -0.66470 | -0.07010 |

Cartesian coordinates and optimized **3a** in gas phase: E(RB3LYP) = -1301.027717 hartees; Dipole Moment = 5.369467 Debye; Basis Set = 6-311+G(d,p).

| 0       | -2.11390 | 0.25260             | -1.79050            |
|---------|----------|---------------------|---------------------|
| N       | -1.22220 | 1.23370             | 0.05110             |
| Н       | -1 30820 | 1 39800             | 1 04280             |
| N       | -0 93410 | 4 53110             | -0 75350            |
| C       | -2 11010 | 0 20210             | -0 57520            |
|         | -2.11010 | 0.39310             | -0.57520            |
| C       | -3.03040 | -0.34920            | 0.35120             |
| C       | -2.50800 | -0.93510            | 1.48850             |
| Н       | -1.44710 | -0.85390            | 1.69690             |
| С       | -3.32180 | -1.68080            | 2.36770             |
| Н       | -2.88010 | -2.14250            | 3.24300             |
| С       | -4.66140 | -1.82080            | 2.10630             |
| Н       | -5.29580 | -2.38870            | 2.77880             |
| С       | -5.24490 | -1.23270            | 0.95420             |
| С       | -4.42320 | -0.49130            | 0.04310             |
| С       | -0.22350 | 2.00190             | -0.69250            |
| н       | -0.29300 | 1.64030             | -1.72160            |
| C       | -0 61040 | 3 42490             | -0 73220            |
| C       | 1 19910  | 1 70330             | -0 14670            |
| C       | 1 77120  | 2 75220             | -0.14070            |
|         | 1.02450  | 2.75520             | 0.00070             |
| H       | 1.23450  | 3.67050             | 0.894/0             |
| C       | 3.03680  | 2.56880             | 1.22340             |
| Н       | 3.46700  | 3.33440             | 1.85980             |
| С       | 3.76850  | 1.40750             | 0.95240             |
| С       | 5.08010  | 1.18990             | 1.49590             |
| H       | 5.50400  | 1.95600             | 2.13640             |
| С       | 5.77970  | 0.05930             | 1.21960             |
| Н       | 6.76980  | -0.08970            | 1.63730             |
| С       | 5.23440  | -0.96360            | 0.37210             |
| С       | 5.93950  | -2.13810            | 0.07360             |
| Н       | 6.92890  | -2.28110            | 0.49460             |
| С       | 5.38560  | -3.11310            | -0.75180            |
| н       | 5 94690  | -4 01420            | -0.97150            |
| C       | 4 11780  | -2 93840            | -1 29630            |
| U<br>U  | 3 60000  | -3 70070            | _1 03010            |
| II<br>C | 2 27540  |                     | -1 02500            |
| C       | 2 06900  | -1.77090<br>1.56120 | -1.02J00<br>1 56960 |
|         | 2.00000  | -1.30130            | -1.30000            |
| н       | 1.04200  | -2.32350            | -2.21250            |
| C       | 1.35890  | -0.43290            | -1.29/20            |
| H       | 0.37350  | -0.32350            | -1.73210            |
| С       | 1.89040  | 0.60270             | -0.45090            |
| С       | 3.19370  | 0.41190             | 0.10630             |
| С       | 3.93290  | -0.77470            | -0.18200            |
| С       | -5.03690 | 0.08600             | -1.10160            |
| С       | -6.63280 | -1.36630            | 0.68670             |
| С       | -6.38530 | -0.06170            | -1.32630            |
| С       | -7.19350 | -0.79380            | -0.42790            |
| Н       | -8.25470 | -0.90130            | -0.62200            |
| <br>H   | -7 24420 | -1 92960            | 1 38380             |
|         | ,        |                     |                     |

| Н | -6.83330 | 0.38630 | -2.20610 |
|---|----------|---------|----------|
| Н | -4.42700 | 0.63010 | -1.80860 |

|     | Minor contribs          |                            |                                                             |                                                             |                                                             | H-5->LUMO (4%)            | H-3->LUMO (3%)            | 3-<br>HOMO->L+3 (3%)                                                           | H-6->L+1 (5%), H-4->LUMO (5%), H-3->LUMO (5%), H-2->LUMO (6%), HOMO->L+4 (3%) | H-6->L+1 (4%), H-3->LUMO (5%), HOMO->L+5 (3%)                                                                    | H-6->LUMO (4%), H-4->LUMO (5%), H-3->LUMO (9%), H-2->L+1<br>(2%), HOMO->L+5 (2%) | H-5->L+1 (2%), H-3->LUMO (4%), H-2->L+1 (3%), HOMO->L+4 (2%),<br>HOMO->L+6 (3%) | H-5->LUMO (6%)                             | H-4->L+1 (7%), H-3->L+3 (4%), H-2->L+1 (7%), H-1->LUMO (9%)                                  | H-5->L+1 (5%), H-4->L+1 (3%), H-3->L+3 (2%), H-2->L+1 (2%), H-2-<br>>L+3 (5%)  |                                                            | H-7->LUMO (2%), HOMO->L+5 (5%)             | H-7->LUMO (3%), HOMO->L+5 (3%), HOMO->L+6 (4%), HOMO-<br>>L+9 (3%) | H-7->LUMO (4%), H-6->L+1 (2%), H-4->L+1 (4%), H-3->L+3 (4%) | H-3->L+2 (7%), H-1->L+2 (3%), HOMO->L+8 (6%), HOMO->L+9 (2%) | H-7->LUMO (2%), H-5->L+1 (7%), H-3->L+1 (3%), HOMO->L+9 (3%) |
|-----|-------------------------|----------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|---------------------------|---------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|
|     | Symmetry Major contribs | Singlet-A HOMO->LUMO (98%) | Singlet-A H-1->LUMO (37%), HOMO->L+1 (30%), HOMO->L+2 (33%) | Singlet-A H-1->LUMO (16%), HOMO->L+1 (70%), HOMO->L+2 (14%) | Singlet-A H-4->LUMO (62%), H-3->LUMO (15%), HOMO->L+4 (21%) | Singlet-A H-2->LUMO (93%) | Singlet-A HOMO->L+3 (92%) | H-6->LUMO (13%), H-5->LUMO (13%), H-4->LUMO (12%), H-<br>Singlet-A >LUMO (58%) | Singlet-A H-5->LUMO (33%), H-5->L+1 (21%), H-2->L+1 (20%)                     | H-6->LUMO (12%), H-5->LUMO (12%), H-5->L+1 (13%), H-4-<br>Singlet-A >LUMO (11%), H-2->L+1 (18%), HOMO->L+4 (18%) | Singlet-A H-5->LUMO (19%), HOMO->L+4 (51%)                                       | Singlet-A H-6->LUMO (40%), H-5->LUMO (11%), HOMO->L+5 (28%)                     | Singlet-A H-6->LUMO (28%), HOMO->L+5 (52%) | H-5->l+1 (10%), H-3->l+1 (26%), H-2->l+3 (10%), H-1->l+1<br>Singlet-A (12%), HOMO->l+2 (10%) | H-3->L+1 (13%), H-1->LUMO (15%), H-1->L+1 (34%), HOMO-<br>Singlet-A >L+2 (16%) | Singlet-A H-1->LUMO (19%), H-1->L+1 (53%), HOMO->L+2 (23%) | Singlet-A HOMO->L+6 (77%), HOMO->L+7 (11%) | Singlet-A HOMO->L+7 (71%), HOMO->L+8 (14%)                         | Singlet-A H-5->L+1 (24%), H-3->L+1 (38%), H-2->L+1 (20%)    | Singlet-A H-8->LUMO (18%), H-4->L+2 (33%), H-1->L+4 (21%)    | Singlet-A H-4->L+1 (64%), HOMO->L+8 (11%)                    |
|     | Osc.<br>Strength        | 0.0941                     | 0.002                                                       | 0.002                                                       | 0.0017                                                      | 0.0024                    | 0.0014                    | 0.0048                                                                         | 0.0042                                                                        | 0.0082                                                                                                           | 0.0033                                                                           | 0.0006                                                                          | 0.0318                                     | 0.2297                                                                                       | 0.5271                                                                         | 0.7151                                                     | 0.0438                                     | 0.0197                                                             | 0.2373                                                      | 0.0032                                                       | 0.0221                                                       |
| 100 | Wavelength<br>(nm)      | 397.4107091                | 326.008238                                                  | 325.7598345                                                 | 280.5707015                                                 | 276.4480658               | 270.3124098               | 268.3233991                                                                    | 261.990096                                                                    | 260.2195211                                                                                                      | 259.5875236                                                                      | 255.5532052                                                                     | 252.9463706                                | 246.7494438                                                                                  | 245.9759806                                                                    | 244.8586808                                                | 241.8165724                                | 233.2108062                                                        | 228.9347508                                                 | 227.2146041                                                  | 226.9068886                                                  |
|     | Energy (cm-1)           | 25162.88508                | 30674.07149                                                 | 30697.46157                                                 | 35641.64022                                                 | 36173.15959               | 36994.23199               | 37268.4605                                                                     | 38169.3818                                                                    | 38429.09232                                                                                                      | 38522.65264                                                                      | 39130.79468                                                                     | 39534.07189                                | 40526.94039                                                                                  | 40654.37599                                                                    | 40839.88351                                                | 41353.65868                                | 42879.65966                                                        | 43680.56821                                                 | 44011.25553                                                  | 44070.94056                                                  |
|     | No.                     | 1                          | 2                                                           | £                                                           | 4                                                           | S                         | 9                         | 7                                                                              | 00                                                                            | 6                                                                                                                | 10                                                                               | 11                                                                              | 12                                         | 13                                                                                           | 14                                                                             | 15                                                         | 16                                         | 17                                                                 | 18                                                          | 19                                                           | 20                                                           |

**Table S-1** TD-DFT calculated electronic transitions, oscillator strength (*f*), and MO composition for compounds **2a**.

|                 |                  |                  |                 |                                  |                |                 |                                |                                                      |                                  |                 | О (2%), H-5->L+5 (2%)          | (2%)                       |                                  |                |                 | 2(2%), НОМО->L+5 (8%), НОМО->L+7  |                |                                  |                                  | ), H-1->L+4 (4%)            |
|-----------------|------------------|------------------|-----------------|----------------------------------|----------------|-----------------|--------------------------------|------------------------------------------------------|----------------------------------|-----------------|--------------------------------|----------------------------|----------------------------------|----------------|-----------------|-----------------------------------|----------------|----------------------------------|----------------------------------|-----------------------------|
| Minor contribs  |                  |                  |                 |                                  | H-3->L+3 (3%)  |                 |                                |                                                      | H-5->L+1 (2%)                    |                 | H-6->LUMO (5%), H-5->LUM(      | H-5->L+1 (2%), HOMO->L+6 ( | H-5->LUMO (7%)                   |                | HOMO->L+6 (8%)  | H-8->LUMO (4%), H-6->LUM(<br>(4%) |                |                                  | HOMO->L+6 (4%)                   | H-7->L+1 (5%), H-3->L+3 (4% |
| Major contribs  | HOMO->LUMO (98%) | H-1->LUMO (100%) | HOMO->L+1 (99%) | H-2->LUMO (53%), HOMO->L+2 (47%) | H-1->L+1 (94%) | H-3->LUMO (99%) | H-3->L+1 (57%), H-1->L+3 (41%) | H-5->LUMO (21%), H-4->LUMO (56%), HOMO->L+4<br>(21%) | H-5->LUMO (64%), H-4->LUMO (28%) | HOMO->L+3 (96%) | H-5->L+1 (50%), H-4->L+1 (30%) | H-6->LUMO (89%)            | H-4->LUMO (12%), HOMO->L+4 (73%) | H-2->L+1 (99%) | HOMO->L+5 (88%) | HOMO->L+6 (75%)                   | H-1->L+2 (99%) | H-2->LUMO (43%), HOMO->L+2 (48%) | HOMO->L+7 (79%), HOMO->L+8 (11%) | H-1->L+5 (83%)              |
| ı Symmetry      | Singlet-A        | Singlet-A        | Singlet-A       | Singlet-A                        | Singlet-A      | Singlet-A       | Singlet-A                      | Singlet-A                                            | Singlet-A                        | Singlet-A       | Singlet-A                      | Singlet-A                  | Singlet-A                        | Singlet-A      | Singlet-A       | Singlet-A                         | Singlet-A      | Singlet-A                        | Singlet-A                        | Singlet-A                   |
| Osc. Strengt    | 0.0948           | 0                | 0.0003          | 0.0017                           | 0.1203         | 0.0002          | 0.0019                         | 0.0013                                               | 0.0011                           | 0.0013          | 0.0076                         | 0.0056                     | 0.0012                           | 0              | 0.0189          | 0.0141                            | 0.0006         | 1.2792                           | 0.0155                           | 0.0287                      |
| Wavelength (nm) | 397.1688279      | 346.111867       | 344.1710888     | 325.854012                       | 304.0542291    | 286.582514      | 285.1063376                    | 280.3423168                                          | 271.6390093                      | 270.0592311     | 265.3828057                    | 262.6004851                | 259.4788686                      | 256.1074818    | 253.7072439     | 252.9205708                       | 251.3362923    | 245.8345422                      | 241.2801016                      | 239.6663439                 |
| Energy (cm-1)   | 25178.20961      | 28892.39276      | 29055.31675     | 30688.58947                      | 32888.86995    | 34893.96426     | 35074.63245                    | 35670.67618                                          | 36813.5638                       | 37028.91384     | 37681.41637                    | 38080.66081                | 38538.78373                      | 39046.10646    | 39415.50839     | 39538.10466                       | 39787.32998    | 40677.76607                      | 41445.60589                      | 41724.67372                 |
| No.             | 1                | 2                | ę               | 4                                | S              | 9               | 7                              | ø                                                    | 6                                | 10              | 11                             | 12                         | 13                               | 14             | 15              | 16                                | 17             | 18                               | 19                               | 20                          |

**Table S-2** TD-DFT calculated electronic transitions, oscillator strength (f), and MO composition for compounds **2b**.

|                             |                            |                                                             |                                            |                                |                                                                                                   |                                                                                  |                           | .UMO (3%)                                                             |                                                                                                  | .+1 (8%)                                                                         |                                                                               |                                            | (3%), H-3->L+3                                                                                                                                                                                | 1<-01000 (%c) 0                                                                                                | 00->L+7 (7%)                                                       |                                                          |                                | 100->L+7 (4%)                                                      |                                               |  |
|-----------------------------|----------------------------|-------------------------------------------------------------|--------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|--------------------------------|--------------------------------------------------------------------|-----------------------------------------------|--|
| Minor contribs              | H-1->L+2 (6%)              |                                                             | H-1->LUMO (7%)                             | H-3->LUMO (6%), H-2->LUMO (6%) |                                                                                                   |                                                                                  |                           | H-5->LUMO (2%), H-5->L+1 (8%), H-3->LUMO (4%), H-3->L+1 (5%), H-2->LI | H-4->LUMO (4%)                                                                                   | H-6->LUMO (6%), H-5->L+1 (2%), H-2->LUMO (6%), H-2->L+1 (3%), H-1->L-            | H-6->L+1 (9%), H-5->L+1 (9%), H-4->LUMO (3%), H-3->L+1 (6%)                   | H-7->LUMO (7%), H-4->L+1 (2%)              | H-7->LUMO (7%), H-5->L+1 (6%), H-4->L+1 (8%), H-4->L+3 (3%), H-3->L+1 (<br>[3%), H-2->L+1 (3%), H-1->L+2 (3%)<br>Н Л А 1-2 (6%) Н З А 1-2 (6%) Н Э А 1-4 (2%) Н Э А 1-4 2(2%) Н Л А 1-4 2(2%) | 1.2%), numu-2,1,2 (2%), n-2-2(1,2%), n-2-2(1,2%), numu-2(1,2%), numu-2(1,2%), numu-2(1,2%), numu-2(1,2%), numu | H-7->LUMO (4%), H-5->LUMO (4%), H-1->L+4 (4%), HOMO->L+5 (3%), HOI | Н-З->L+1 (7%), Н-2->L+1 (4%), НОМО->L+6 (8%)             | H-7->LUMO (7%), H-4->LUMO (2%) | H-7->LUMO (8%), H-5->L+1 (6%), H-4->L+1 (5%), HOMO->LUMO (3%), HOI | H-З->L+1 (7%), НОМО->L+6 (4%), НОМО->L+8 (5%) |  |
| Symmetr<br>y Major contribs | Singlet-A HOMO->LUMO (90%) | Singlet-A H-1->LUMO (40%), HOMO->L+1 (19%), HOMO->L+2 (39%) | Singlet-A HOMO->L+1 (78%), HOMO->L+2 (14%) | Singlet-A HOMO->L+4 (84%)      | H-3->LUMO (30%), H-2->LUMO (27%), H-1->LUMO (13%), HOMO-<br>Singlet-A >L+2 (12%), HOMO->L+4 (14%) | H-3->LUMO (12%), H-2->LUMO (16%), H-1->LUMO (35%), HOMO-<br>Singlet-A >L+2 (30%) | Singlet-A HOMO->L+3 (99%) | Singlet-A H-6->L+1 (12%), H-2->L+1 (14%), H-1->L+1 (46%)              | H-5->LUMO (15%), H-3->LUMO (20%), H-2->LUMO (25%), H-1-<br>Singlet-A >L+1 (22%), HOMO->L+5 (11%) | H-5->LUMO (14%), H-4->LUMO (15%), H-3->LUMO (10%), HOMO-<br>Singlet-A >L+5 (27%) | H-3->LUMO (14%), H-2->LUMO (12%), H-2->L+1 (19%), H-1->L+1<br>Singlet-A (21%) | Singlet-A H-4->LUMO (60%), HOMO->L+5 (21%) | Singlet-A H-5->LUMO (39%), HOMO->L+5 (16%)<br>H 5 >LUMO (19%) H 7 >L1MO (11%) H 7 >L1                                                                                                         | п-э->LUMU (13%), п-э->L+1 (14%), п-4->L0MU (11%), п-4->L+1<br>Singlet-A (27%)                                  | Singlet-A HOMO->L+6 (68%)                                          | Singlet-A H-3->L+2 (17%), H-2->L+2 (15%), H-1->L+4 (44%) | Singlet-A H-6->LUMO (85%)      | Singlet-A H-3->L+1 (15%), H-1->L+2 (45%)                           | Singlet-A HOMO->L+7 (74%)                     |  |
| Osc.<br>itrength            | 0.3312                     | 0.0064                                                      | 0.0117                                     | 0.0033                         | 0.0635                                                                                            | 0.2392                                                                           | 0.0004                    | 0.0234                                                                | 0.0094                                                                                           | 0.003                                                                            | 0.0056                                                                        | 0.0138                                     | 0.0596                                                                                                                                                                                        | 0.006                                                                                                          | 0.0021                                                             | 0.0008                                                   | 0.0087                         | 0.5305                                                             | 0.0114                                        |  |
| Wavelength<br>(nm)          | 350.8225376                | 337.0143059                                                 | 321.7109759                                | 288.3822785                    | 278.3534485                                                                                       | 274.7085126                                                                      | 268.7945909               | 264.2346725                                                           | 260.6352596                                                                                      | 257.8867088                                                                      | 256.5207891                                                                   | 251.6679042                                | 248.0279127                                                                                                                                                                                   | 244.5399361                                                                                                    | 243.0109624                                                        | 241.4069453                                              | 238.7065711                    | 234.7029739                                                        | 232.9303994                                   |  |

**Table S-3** TD-DFT calculated electronic transitions, oscillator strength (*f*), and MO composition for compounds **3a**.

| Minor contribs         | H-2->L+2 (5%), HOMO->L+1 (9%) | HOMO->LUMO (8%)                                             |                                                             |                           | H-3->L+3 (3%)            |                                            | H-3->LUMO (5%)                           |                                                                                     |                                                                      | H-5->L+1 (5%), H-4->LUMO (3%), H-2->LUMO (5%), HOMO-<br>>L+2 (8%) | H-3->L+1 (4%)             |                           | H-6->L+1 (6%), H-5->L+5 (3%), H-4->L+1 (5%), H-2->L+1 (9%) |                          |                                                                                 | H-7->LUMO (4%), H-6->LUMO (7%), H-5->L+1 (3%)               | H-6->LUMO (3%), H-5->LUMO (9%), H-5->L+1 (4%), HOMO-<br>>L+6 (9%) | H-4->L+1 (4%), H-2->L+2 (3%)                                | H-5->L+1 (4%), HOMO->L+6 (3%), HOMO->L+7 (3%)            | H-7->LUMO (3%), H-4->L+1 (4%), HOMO->L+8 (8%) |
|------------------------|-------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|---------------------------|--------------------------|--------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------|---------------------------|------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------|
| ymmetry Major contribs | Singlet-A HOMO->LUMO (83%)    | Singlet-A H-2->LUMO (10%), HOMO->L+1 (69%), HOMO->L+2 (10%) | Singlet-A H-2->LUMO (35%), HOMO->L+1 (21%), HOMO->L+2 (42%) | Singlet-A H-1->LUMO (98%) | Singlet-A H-1->L+1 (93%) | Singlet-A H-4->LUMO (12%), HOMO->L+4 (84%) | Singlet-A H-3->L+1 (51%), H-1->L+3 (39%) | H-4->LUMO (44%), H-2->LUMO (19%), HOMO->L+2 (16%), HOMO<br>Singlet-A     >L+4 (13%) | H-4->LUMO (38%), H-2->LUMO (23%), H-2->L+1 (14%), HOMO-<br>Singlet-A | Singlet-A H-2->L+1 (72%)                                          | Singlet-A H-3->LUMO (91%) | Singlet-A HOMO->L+3 (95%) | Singlet-A H-5->LUMO (19%), H-5->L+1 (48%)                  | Singlet-A H-1->L+2 (98%) | H-6->LUMO (15%), H-5->LUMO (35%), H-5->L+1 (10%), HOMO-<br>Singlet-A >L+6 (33%) | Singlet-A H-5->LUMO (29%), HOMO->L+5 (29%), HOMO->L+6 (22%) | Singlet-A HOMO->L+5 (66%)                                         | Singlet-A H-7->LUMO (15%), H-6->LUMO (62%), HOMO->L+6 (11%) | Singlet-A H-4->L+1 (42%), H-4->L+2 (18%), H-2->L+4 (23%) | Singlet-A HOMO->L+7 (80%)                     |
| sc. Strength S         | 0.3071                        | 0.0466                                                      | 0.0042                                                      | 0.0135                    | 0.1141                   | 0.0049                                     | 0.0015                                   | 0.0953                                                                              | 0.1375                                                               | 0.095                                                             | 0.0029                    | 0.002                     | 0.0018                                                     | 0.0006                   | 0.0032                                                                          | 0.013                                                       | 0.0104                                                            | 0.0373                                                      | 0.0043                                                   | 0.002                                         |
| Vavelength (nm) O      | 352.9397165                   | 340.5504244                                                 | 334.0991458                                                 | 322.3298921               | 304.1810427              | 288.7382231                                | 285.5396997                              | 278.5222802                                                                         | 275.7103627                                                          | 272.3131847                                                       | 269.7126172               | 267.3052476               | 264.0377218                                                | 262.211727               | 259.0180981                                                                     | 252.5805061                                                 | 250.7010272                                                       | 246.1957764                                                 | 242.5877889                                              | 241.1721547                                   |
| Energy (cm-1) V        | 28333.45054                   | 29364.2271                                                  | 29931.23486                                                 | 31024.11611               | 32875.15853              | 34633.44718                                | 35021.39986                              | 35903.77041                                                                         | 36269.94612                                                          | 36722.42315                                                       | 37076.50055               | 37410.41408               | 37873.37632                                                | 38137.11962              | 38607.34085                                                                     | 39591.33726                                                 | 39888.14929                                                       | 40618.08104                                                 | 41222.19031                                              | 41464.15664                                   |
| No.                    | 1                             | 2                                                           | £                                                           | 4                         | S                        | 9                                          | 7                                        | 00                                                                                  | 6                                                                    | 10                                                                | 11                        | 12                        | 13                                                         | 14                       | 15                                                                              | 16                                                          | 17                                                                | 18                                                          | 19                                                       | 20                                            |

**Table S-4** TD-DFT calculated electronic transitions, oscillator strength (*f*), and MO composition for compounds **3b**.

# 8. Crystallographic Data and Detailed Refinements for 2-3

| $C_{23}H_{16}N_2O$                                     |
|--------------------------------------------------------|
| 336.38                                                 |
| 100(2)                                                 |
| triclinic                                              |
| <i>P</i> -1                                            |
| 9.8120(2)                                              |
| 12.8630(3)                                             |
| 15.4670(3)                                             |
| 110.229(2)                                             |
| 96.599(2)                                              |
| 106.447(2)                                             |
| 1706.94(8)                                             |
| 4                                                      |
| 1.309                                                  |
| 0.639                                                  |
| 704.0                                                  |
| 0.24 	imes 0.1 	imes 0.06                              |
| $Cu K\alpha (\lambda = 1.54184)$                       |
| 6.268 to 154.68                                        |
| $-12 \le h \le 11, -15 \le k \le 16, -19 \le l \le 15$ |
| 42515                                                  |
| 7152 [ $R_{int} = 0.0533$ , $R_{sigma} = 0.0330$ ]     |
| 7152/0/476                                             |
| 1.057                                                  |
| $R_1 = 0.0430, wR_2 = 0.1102$                          |
| $R_1 = 0.0496, wR_2 = 0.1145$                          |
| 0.25/-0.23                                             |
|                                                        |

 Table S-5
 Crystal data and structure refinement of 2a

| C57H39Cl9N4O2 |
|---------------|
| 1130.97       |
| 100(2)        |
| triclinic     |
| <i>P</i> -1   |
|               |

a/Å

 $b/\text{\AA}$ 

c/Å

Table S-6 Crystal data and structure refinement of 2b

\_

10.3742(2)

11.1000(2)

11.2768(2)

| $\alpha/^{\circ}$                             | 92.4379(16)                                            |
|-----------------------------------------------|--------------------------------------------------------|
| $\beta/^{\circ}$                              | 94.2137(15)                                            |
| $\gamma/^{\circ}$                             | 91.8446(16)                                            |
| Volume/Å <sup>3</sup>                         | 1293.07(4)                                             |
| Ζ                                             | 1                                                      |
| $ ho_{\rm calc} {\rm g/cm}^3$                 | 1.452                                                  |
| $\mu/\text{mm}^{-1}$                          | 4.842                                                  |
| <i>F</i> (000)                                | 578.0                                                  |
| Crystal size/mm <sup>3</sup>                  | $0.208 \times 0.137 \times 0.07$                       |
| Radiation                                     | Cu <i>K</i> $\alpha$ ( $\lambda$ = 1.54184)            |
| $2\theta$ range for data collection/°         | 7.87 to 154.746                                        |
| Index ranges                                  | $-12 \le h \le 13, -14 \le k \le 13, -13 \le l \le 14$ |
| Reflections collected                         | 32585                                                  |
| Independent reflections                       | 5420 [ $R_{int} = 0.0665, R_{sigma} = 0.0381$ ]        |
| Data/restraints/parameters                    | 5420/42/405                                            |
| Goodness-of-fit on $F^2$                      | 1.066                                                  |
| Final <i>R</i> indexes [ $I > = 2\sigma$ (I)] | $R_1 = 0.0437, wR_2 = 0.1124$                          |
| Final <i>R</i> indexes [all data]             | $R_1 = 0.0485, wR_2 = 0.1165$                          |
| Largest diff. peak/hole / e Å <sup>-3</sup>   | 0.97/-0.57                                             |

| Empirical formula                     | $C_{25}H_{16}N_2O$                                     |
|---------------------------------------|--------------------------------------------------------|
| Formula weight                        | 360.40                                                 |
| Temperature/K                         | 100(2)                                                 |
| Crystal system                        | monoclinic                                             |
| Space group                           | $P2_{1}/c$                                             |
| a/Å                                   | 10.04500(10)                                           |
| b/Å                                   | 20.4122(2)                                             |
| $c/{ m \AA}$                          | 17.8760(2)                                             |
| $\beta/^{\circ}$                      | 103.3480(10)                                           |
| Volume/Å <sup>3</sup>                 | 3566.29(7)                                             |
| Ζ                                     | 8                                                      |
| $ ho_{\rm calc} {\rm g/cm}^3$         | 1.342                                                  |
| $\mu/\text{mm}^{-1}$                  | 0.652                                                  |
| <i>F</i> (000)                        | 1504.0                                                 |
| Crystal size/mm <sup>3</sup>          | $0.194 \times 0.115 \times 0.059$                      |
| Radiation                             | Cu <i>K</i> $\alpha$ ( $\lambda$ = 1.54184)            |
| $2\theta$ range for data collection/° | 6.676 to 159.572                                       |
| Index ranges                          | $-12 \le h \le 12, -26 \le k \le 25, -19 \le l \le 22$ |
| Reflections collected                 | 88647                                                  |
|                                       |                                                        |

| Independent reflections                       | 7713 [ $R_{\text{int}} = 0.0699, R_{\text{sigma}} = 0.0315$ ] |
|-----------------------------------------------|---------------------------------------------------------------|
| Data/restraints/parameters                    | 7713/0/513                                                    |
| Goodness-of-fit on $F^2$                      | 1.043                                                         |
| Final <i>R</i> indexes [ $I > = 2\sigma$ (I)] | $R_1 = 0.0663, wR_2 = 0.1790$                                 |
| Final <i>R</i> indexes [all data]             | $R_1 = 0.0770, wR_2 = 0.1918$                                 |
| Largest diff. peak/hole / e Å <sup>-3</sup>   | 0.59/-0.23                                                    |

| Empirical formula                             | $C_{30}H_{19}Cl_3N_2O$                                        |
|-----------------------------------------------|---------------------------------------------------------------|
| Formula weight                                | 529.82                                                        |
| Temperature/K                                 | 100(2)                                                        |
| Crystal system                                | monoclinic                                                    |
| Space group                                   | <i>P</i> 2 <sub>1</sub>                                       |
| a/Å                                           | 4.8515(2)                                                     |
| b/Å                                           | 21.8040(12)                                                   |
| c/Å                                           | 11.5794(5)                                                    |
| $\beta/^{\circ}$                              | 91.942(4)                                                     |
| Volume/Å <sup>3</sup>                         | 1224.19(10)                                                   |
| Ζ                                             | 2                                                             |
| $ ho_{ m calc} g/{ m cm}^3$                   | 1.437                                                         |
| $\mu/\text{mm}^{-1}$                          | 3.607                                                         |
| <i>F</i> (000)                                | 544.0                                                         |
| Crystal size/mm <sup>3</sup>                  | 0.2 	imes 0.05 	imes 0.04                                     |
| Radiation                                     | $Cu K\alpha (\lambda = 1.54184)$                              |
| $2\theta$ range for data collection/°         | 7.64 to 149.936                                               |
| Index ranges                                  | $-6 \le h \le 6, -27 \le k \le 23, -14 \le l \le 14$          |
| Reflections collected                         | 23474                                                         |
| Independent reflections                       | 4748 [ $R_{\text{int}} = 0.0808, R_{\text{sigma}} = 0.0523$ ] |
| Data/restraints/parameters                    | 4748/17/367                                                   |
| Goodness-of-fit on $F^2$                      | 1.060                                                         |
| Final <i>R</i> indexes [ $I \ge 2\sigma$ (I)] | $R_1 = 0.0694, wR_2 = 0.1904$                                 |
| Final <i>R</i> indexes [all data]             | $R_1 = 0.0840, wR_2 = 0.2025$                                 |
| Largest diff. peak/hole / e Å <sup>-3</sup>   | 0.37/-0.51                                                    |
| Flack parameter                               | 0.03(4)                                                       |

Table S-8 Crystal data and structure refinement of  $\mathbf{3b}$