Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

## Novel Cost-effective Synthesis of Non-doped Turbostratic Graphene from Graphite Intercalation compound: Development of a Durable and Stable Electrocatalyst for Oxygen Reduction Reaction

Vijayasree Haridas<sup>1</sup>, Zahira Yaakob<sup>2</sup>, Sankaran Sugunan<sup>2</sup>, Binitha N. Narayanan <sup>1,\*</sup>

<sup>1</sup>Department of Chemistry, Sree Neelakanta Government Sanskrit College

Pattambi, Palakkad-679306, Kerala, India

Ph: +91 466-2212223. Fax: +91-466-2212223, \*binithann@yahoo.co.in

<sup>2</sup> Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangore, Malaysia
<sup>3</sup>Department of Applied Chemistry, Cochin University of Science and Technology,
Cochin 22, Kerala, India

Table S1. Performance of various graphene-modified electrodes in the oxygen reduction reaction.

| Sl.No | Catalyst                      | Current       | Onset         | Half-wave     | Ref |
|-------|-------------------------------|---------------|---------------|---------------|-----|
|       |                               | density       | potential (V) | potential (V) |     |
|       |                               | $(mAcm^{-2})$ |               |               |     |
| 1     | S1N6C900*                     | 4.86          | 0.95          | 0.83          | 1   |
|       |                               |               |               |               |     |
| 2.    | N-graphene (900) <sup>+</sup> | -             | 0.308 vs SHE  | 0.43          | 2   |
|       |                               |               |               |               |     |
| 3.    | N, S-doped graphene@          | -3.49 to      | 0.87          | -             | 3   |
|       |                               | 4.17          |               |               |     |
| 4.    | NrGO#                         | 2.5           | 1.1           | 0.84          | 4   |

| 5. | NG <sup>\$</sup>                        | -     | -0.10 vs | -     | 5    |
|----|-----------------------------------------|-------|----------|-------|------|
|    |                                         |       | Ag/AgCl  |       |      |
|    |                                         |       |          |       |      |
| 6. | NG-C <sup>&amp;</sup>                   | -3.3  | 0        | -     | 6    |
|    |                                         |       |          |       |      |
| 7. | g-C <sub>3</sub> N <sub>4</sub> @GO     | 5.98  | 0.98     | 0.859 | 7    |
|    |                                         |       |          |       |      |
| 8. | Fe <sub>3</sub> O <sub>4</sub> /N-Gas** | -2.56 | -0.19 vs | -     | 8    |
|    |                                         |       | Ag/AgCl  |       |      |
| 9. | Turbostratic graphene                   | -6.45 | 0.92     | 0.80  | This |
|    |                                         |       |          |       | work |

<sup>\*</sup>S, N dual-doped Graphene liked carbon nanosheet, + N-graphene (900), @N,S-doped graphene Co/N<sub>3</sub>S<sub>3</sub>-GF and Mn/N<sub>3</sub>S<sub>3</sub>-GF, \*Nitrogen-doped reduced-graphene oxide, \$Nitrogen-doped graphene, &N-doped graphene from citric acid, \*\*Three-dimensional (3D) N-doped graphene aerogel (N-GA)-supported Fe<sub>3</sub>O<sub>4</sub> nanoparticles.

## References

- (1) Li, J.; Zhang, Y.; Zhang, X.; Huang, J.; Han, J.; Zhang, Z.; Han, X.; Xu, P.; Song, B. S, N Dual-Doped Graphene-like Carbon Nanosheets as Efficient Oxygen Reduction Reaction Electrocatalysts. *ACS Appl. Mater. Interfaces* **2017**, *9* (1), 398–405. https://doi.org/10.1021/acsami.6b12547.
- (2) Geng, D.; Chen, Y.; Chen, Y.; Li, Y.; Li, R.; Sun, X.; Ye, S.; Knights, S. High Oxygen-Reduction Activity and Durability of Nitrogen-Doped Graphene. *Energy Environ. Sci.* **2011**, *4* (3), 760–764. https://doi.org/10.1039/C0EE00326C.
- (3) Fernandes, D. M.; Mathumba, P.; Fernandes, A. J. S.; Iwuoha, E. I.; Freire, C. Towards Efficient Oxygen Reduction Reaction Electrocatalysts through Graphene Doping. *Electrochimica Acta* **2019**, *319*, 72–81. https://doi.org/10.1016/j.electacta.2019.06.175.
- (4) Dumont, J. H.; Martinez, U.; Artyushkova, K.; Purdy, G. M.; Dattelbaum, A. M.; Zelenay, P.; Mohite, A.; Atanassov, P.; Gupta, G. Nitrogen-Doped Graphene Oxide Electrocatalysts for the Oxygen Reduction Reaction. *ACS Appl. Nano Mater.* **2019**, *2* (3), 1675–1682. https://doi.org/10.1021/acsanm.8b02235.
- (5) Lin, Z.; Waller, G.; Liu, Y.; Liu, M.; Wong, C.-P. Facile Synthesis of Nitrogen-Doped Graphene via Pyrolysis of Graphene Oxide and Urea, and Its Electrocatalytic Activity toward the Oxygen-Reduction Reaction. *Adv. Energy Mater.* **2012**, *2* (7), 884–888. https://doi.org/10.1002/aenm.201200038.

- (6) Liao, Y.; Gao, Y.; Zhu, S.; Zheng, J.; Chen, Z.; Yin, C.; Lou, X.; Zhang, D. Facile Fabrication of N-Doped Graphene as Efficient Electrocatalyst for Oxygen Reduction Reaction. *ACS Appl. Mater. Interfaces* **2015**, 7 (35), 19619–19625. https://doi.org/10.1021/acsami.5b05649.
- (7) Xiang, Q.; Liu, Y.; Zou, X.; Hu, B.; Qiang, Y.; Yu, D.; Yin, W.; Chen, C. Hydrothermal Synthesis of a New Kind of N-Doped Graphene Gel-like Hybrid As an Enhanced ORR Electrocatalyst. *ACS Appl. Mater. Interfaces* **2018**, *10* (13), 10842–10850. https://doi.org/10.1021/acsami.7b19122.
- (8) Wu, Z.-S.; Yang, S.; Sun, Y.; Parvez, K.; Feng, X.; Müllen, K. 3D Nitrogen-Doped Graphene Aerogel-Supported Fe3O4 Nanoparticles as Efficient Electrocatalysts for the Oxygen Reduction Reaction. *J. Am. Chem. Soc.* **2012**, *134* (22), 9082–9085. https://doi.org/10.1021/ja3030565.