Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

Highly conductive triple-layered hollow MnO₂@SnO₂@NHCS nanospheres with excellent lithium storage for high performance lithium-ion batteries

Yameng Mei,^a Jin'an Zhao,^{*ab} Liyun Dang,^{*c} Jiyong Hu,^c Yan Guo,^c and Shuaiguo Zhang, ^c ^a College of Chemistry, Zhengzhou University, Zhengzhou 450001 ^b College of Chemical Engineering and Dyeing Engineering, Henan University of Engineering, Zhengzhou 450001, *E-mail:zjinan@zzu.edu.cn ^c School of Material and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467036, *E-mail:20161010@hncj.edu.cn

Fig. S1 FESEM images of (a) ${\rm SiO}_2$ templates and (b) NHCS nanospheres.

Fig. S2 FESEM(a), TEM(b) and HRTEM(c, d) images of SnO₂@NHCS.

Fig. S3 FESEM(a), TEM(b), HRTEM(c) and SAED(d) images of MnO₂@NHCS.

Fig. S4 Raman Spectra of SnO₂@NHCS, MnO₂@SnO₂@NHCS-1, MnO₂@SnO₂@NHCS-2, MnO₂@SnO₂@NHCS-5, and MnO₂ @NHCS

Fig. S5 XPS spectra of MnO₂@NHCS.

Fig. S6 EDX point spectra of (a) MnO₂@SnO₂@NHCS-5, (b) MnO₂@SnO₂@NHCS-2, (c) MnO₂@SnO₂@NHCS-1 and (d) carbon content of MnO₂@SnO₂@NHCS-5, MnO₂@SnO₂@NHCS-2, MnO₂@SnO₂@NHCS-1

Fig. S7 CV curves of the (a) SnO₂@NHCS, (b) MnO₂@SnO₂@NHCS-1, (c) MnO₂@SnO₂@NHCS-2, (d) MnO₂@NHCS.

Materials	Current density (mAg ⁻¹)	Cycle numbers	Capacity (mAhg ⁻¹)	References
MnO ₂ @SnO ₂ @NHCS-5	100	100	1053.8	This work
SnO2@C@VO2 CHNS	100	100	765.1	1
α -Fe ₂ O ₃ /MnO ₂	100	150	860	2
CF@MnO ₂	100	150	648	3
Fe ₂ O ₃ /Co ₃ O ₄	100	50	500	4
SnO ₂ -C	100	30	492.5	5
δ-MnO2	1000	100	320	6
C/MnO	100	100	943.6	7
N-MnO/GNS	100	90	772	8

Table S1. Comparison of the electrochemical properties of the prepared MnO₂@SnO₂@NHCS-5 with previously reported anode materials for LIBs.

References

- 1. W. Guo, Y. Wang, Q. Li, D. Wang, F. Zhang, Y. Yang and Y. Yu, ACS Appl Mater Interfaces, 2018, **10**, 14993-15000.
- 2. D. Wang, Y. Wang, Q. Li, W. Guo, F. Zhang and S. Niu, Journal of Power Sources, 2018, 393, 186-192.
- 3. Q. Han, W. Zhang, Z. Han, F. Wang, D. Geng, X. Li, Y. Li and X. Zhang, Journal of Materials Science, 2019, 54, 11972-11982.
- 4. Z. Li, B. Li, L. Yin and Y. Qi, ACS Appl Mater Interfaces, 2014, 6, 8098-8107.
- 5. P. Wu, N. Du, H. Zhang, J. Yu, Y. Qi and D. Yang, Nanoscale, 2011, 3, 746-750.
- 6. W. Zhang, B. Zhang, H. Jin, P. Li, Y. Zhang, S. Ma and J. Zhang, Ceramics International, 2018, 44, 20441-20448.
- 7. K. Liao, Q. Zhong, Z. Lv and Y. Bu, Materials in Electronics, 2019, **30**, 5978-5985.
- 8. K. Zhang, P. Han, L. Gu, L. Zhang, Z. Liu, Q. Kong, C. Zhang, S. Dong, Z. Zhang, J. Yao, H. Xu, G. Cui and L. Chen, ACS Appl Mater Interfaces, 2012, 4, 658-664.