Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

Predicted structure and selectivity of glutamic n, n-bis(carboxymethyl acid complexes

Fatima Mechachti¹, Salima Lakehal^{1,2}, Aicha Lakehal³, Christophe Morell⁴, Lynda Merzoud⁴, Henry Chermette⁴

¹Laboratoire de Chimie des Matériaux et des Vivants: Activité & Réactivité, Université Batnal, Batna, Algérie

² Institut des sciences de la terre et de l'univers, Université de Batna2, Batna, Algérie

³ Faculté des sciences techniques, Université de Batna2, Batna, Algérie

⁴ Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS-Lyon, Institut des Sciences Analytiques, UMR CNRS 5280, 69622 Villeurbanne Cedex, France

 Table S1. Selected geometrical parameters of GLDA complexes (B structure)

	Metal ions				Bond length (Å)				11. 1. 1. 1 1.	$\mathbf{F}(1, \mathbf{r}, 1)$
		Spin	M-N	M-O ₁₇	M-O ₁₂	M-O ₁₄	M-O ₁₆	M-O ₂₉	dinedral angle	E(KCal)
Mn ²⁺	Solvent	HS	2.27	2.21	2.14	2.21	2.08	2.30	22.5	- 4839.84
		LS	2.29	2.21	2.15	2.21	2.09	2.29	12.1	-4303.88
Fe ²⁺	solvent	HS	2.21	2.11	2.13	2.09	2.12	2.24	22.9	-4818.83
Co ²⁺	solvent	HS	2.11	2.12	2.08	2.13	2.02	2.22	20.1	- 4783.13
Ni ²⁺	solvent		2.03	2.08	2.04	2.09	2.06	2.17	15.7	- 4727.28
Zn ²⁺	solvent		2.14	2.15	2.10	2.17	2.05	2.19	20.3	- 4654.01

Table S2: Selected geometrical parameters of GLDA complexes (A structure)									
Metal ions				В	dihadral ar ala	E(lreel/mel)			
		Spin	M-N	M-O ₁₇	M-O ₁₂	M-O ₁₄	M-O ₁₆	dinedral angle	E(Kcal/mol)
	20 5	H-S	2.23	2.28	2.06	2.18	2.01	37.0	-4331.34
Mn ²⁺	gas	L-S	2.00	2.03	2.02	1.99	1.92	25.1	-4297.43
	solvent	H-S	2.22	2.22	2.07	2.20	2.03	26.6	-4503.29
Fe ²⁺	00 5	H-S	2.19	2.18	2.08	2.08	1.98	33.4	-4301.01 -4284.17
	gas	L-S	1.90	1.99	1.95	1.98	1.93	14.7	-4284.17
		H-S	2.17	2.12	2.08	2.08	1.98	28.4	-4473.42
	solvent	L-S	1.90	1.97	1.94	1.97	1.92	13.4	-4460.66
	ans.	H-S	2.10	2.17	2.01	2.09	1.97	35.0	-4274.47
$C a^{2+}$	gas	L-S	2.07	1.96	1.93	1.96	1.92	14.0	-4272.86
C021		H-S	2.07	2.13	2.01	2.09	1.95	23.4	-4446.16
	solvent	L-S	2.06	1.93	1.93	1.94	1.91	13.7	-4447.09
NI:2+	gas		2.03	2.15	2.01	2.08	1.95	28.4	-4214.55
111-	solvent		2.00	2.08	2.00	2.08	1.96	20.0	-4388.50
Cu ²⁺	gas		2.23	2.07	2.01	2.03	1.95	30.2	-4162.18
<u> </u>	solvent		2.17	2.02	1.99	2.03	1.95	22.2	-4333.75
7 n ²⁺	gas		2.11	2.34	2.00	2.15	1.93	41.6	-4145.21
Zu-	solvent		2.09	2.21	2.00	2.17	1.95	31.6	-4316.91

Complexes	PC	ρ(r)	$\nabla^2 \rho(\mathbf{r})$	V /G	H(r)
	Mn-O ₁₆	0.065	0.3137	1.0983	-0.0085
	Mn-O ₁₄	0.051	0.2210	1.0849	-0.0051
	Mn-O ₁₂	0.060	0.2705	1.0977	-0.0073
GLDA-Mn	Mn-O ₁₇	0.051	0.2214	1.0852	-0.0052
	Mn-N	0.054	0.1911	1.1628	-0.0093
	Mn-O ₂₉	0.041	0.1781	1.0502	-0.0024
	H_{27} - H_{20}	0.016	0.0560	0.8737	0.0016
	Fe-O ₁₆	0.059	0.4255	1.0486	-0.0054
	Fe-O ₁₄	0.065	0.4161	1.0799	-0.0090
	Fe-O ₁₂	0.059	0.5226	1.0483	-0.0066
GLDA-Fe	Fe-O ₁₇	0.063	0.418	1.0827	-0.0094
	Fe-O ₂₉	0.043	0.3444	1.0171	-0.0015
	Fe-N	0.059	0.531	1.1299	-0.0198
	H_{20} - H_{27}	0.017	0.0385	0.7863	0.0017
	Co-O ₁₆	0.070	0.3100	1.0746	-0.0062
	Co-O ₁₄	0.059	0.2911	1.1073	-0.0087
	Co-O ₁₂	0.064	0.3521	1.1062	-0.0105
GLDA-Co	Co-O ₁₇	0.060	0.2940	1.1048	-0.0086
02211 00	Co-O ₂₉	0.044	0.2147	1.0518	-0.0029
	Co-N	0.071	0.3114	1.1667	-0.0156
	C-H ₂₇	0.006	0.1051	0.9064	0.0022
	H ₂₇ -H ₂₀	0.015	0.0576	0.8945	0.0014
	Ni-O ₁₆	0.061	0.3287	1.0765	-0.0068
	$Ni-O_{14}$	0.062	0.3037	1.0989	-0.0083
	Ni-O ₁₂	0.068	0.3532	1.1021	-0.0100
GLDA-Ni	N1-O ₁₇	0.062	0.3079	1.0998	-0.0085
	N1-N	0.084	0.3494	1.1889	-0.0203
	$H_{27}-H_{20}$	0.017	0.0559	0.8//2	0.0015
	$NI-O_{29}$	0.048	0.2433	1.0000	-0.0040
	ПО19-О16	0.023	0.0977	0.00/4	0.0023
	$Zn-O_{16}$	0.064	0.3132	1.1081	-0.0095
	$Zn-O_{14}$	0.052	0.2568	1.1011	-0.0072
	$Zn-O_{12}$	0.061	0.2515	1.1010	-0.0071
GLDA-Zn	$Zn-O_{17}$	0.064	0.20/3	1.0928	-0.0053
	Zn-IN Zn O	0.005	0.2308	1.1//3	-0.0125
	Zn-O ₂₉ ц ц	0.04/	0.1/39	1.0003	-0.0028
	п ₂₀ -п ₂₇	0.010	0.0383	0.7803	0.001/

Table S3: Topological data for the BCPs of coordination bonds in the GLDA-M complexes (B structure) when (M = Mn, Fe, Co, Ni, Cu and Zn)

Complexes	ВСР	ρ(r)	$\nabla^2 \rho(\mathbf{r})$	V /G	H(r)
	Mn-O ₁₆ Mn-O ₁₄	0.075 0.052	0.3750 0.2115	1.1202 1.0866	-0.0128 -0.0050
GLDA-Mn	Mn-O ₁₂	0.070	0.3446	1.1205	-0.0118
	Mn-O ₁₇	0.050	0.1938	1.0905	-0.0048
	Mn-N	0.060	0.2002	1.1642	-0.0098
	H ₂₇ - H ₂₀	0.010	0.0378	0.8043	0.0015
	Fe-O ₁₆	0.085	0.4831	1.0740	-0.0097
	$Fe-O_{14}$	0.067	0.4330	1.0778	-0.0091
GLDA-Fe	$Fe-O_{12}$	0.066	0.5376	1.0463	-0.0065
	$Fe-O_{17}$	0.061	0.4358	1.0803	-0.0095
	ге-іл НН	0.003	0.5518	0.8834	-0.0246
	1120-1127	0.017	0.0373	0.0054	0.0015
	Co-O ₁₆	0.087	0.4977	1.1175	-0.0166
	Co-O ₁₄	0.064	0.4523	1.1075	-0.0136
GLDA-Co	Co-O ₁₂	0.075	0.4702	1.0934	-0.0121
	Co-O ₁₇	0.058	0.4439	1.1119	-0.0140
	Co-N	0.077	0.3127	1.1619	-0.0151
	$H_{27}-H_{20}$	0.016	0.0434	0.8213	0.0016
	Ni-O ₁₆	0.081	0.5216	1.1293	-0.0194
	Ni-O ₁₄	0.064	0.4817	1.1370	-0.0191
CI DA Ni	$Ni-O_{12}$	0.075	0.4918	1.1297	-0.0183
GLDA-NI	$Ni-O_{17}$	0.063	0.4729	1.1441	-0.0199
	Ni-N	0.089	0.1413	1.1394	-0.0057
	H_{27} - H_{20}	0.018	0.5216	1.1293	-0.0194
	Cu-O ₁₆	0.083	0.4099	1.1444	-0.0173
	Cu-O ₁₄	0.071	0.3112	1.1219	-0.0108
GLDA-Cu	$Cu-O_{12}$	0.078	0.3637	1.1369	-0.0144
	Cu-O ₁₇	0.073	0.0687	1.1259	-0.0108
	Cu-N	0.062	0.2094	1.1456	-0.0089
	$H_{27}-H_{20}$	0.017	0.0401	0.7969	-0.0017
	Zn-O ₁₆	0.084	0.4190	1.1417	-0.0173
	$Zn-O_{14}$	0.052	0.2015	1.0879	-0.0049
CLDA Z	$Zn-O_{12}$	0.077	0.3718	1.1361	-0.0146
GLDA-Zn	$Zn-O_{17}$	0.048	0.1638	1.0832	-0.0037
	Zn-N	0.074	0.2552	1.1798	-0.0140
	H ₂₇ -H ₂₀	0.017	0.0549	0.8682	0.0016

Table S4: Topological data for the BCPs of coordination bonds in the GLDA-M complexes (A structure) when (M = Mn, Fe, Co, Ni, Cu and Zn)

		Ε	3		А				
	Ring1	Ring2	Ring3	Ring4	Ring1	Ring2	Ring3	Ring4	
$\begin{array}{c} Mn^{2+} \\ Fe^{2+} \\ Co^{2+} \\ Ni^{2+} \\ Cu^{2+} \end{array}$	0.0062 0.0078 0.0072 0.0071	0.0208 0.0225 0.0239 0.0243	0.0189 0.0209 0.0222 0.0238	0.0218 0.0235 0.0241 0.0251	0.0065 0.0097 0.0081 0.0079 0.0072	0.0215 0.0233 0.0241 0.0247 0.0224	$\begin{array}{c} 0.0201 \\ 0.0222 \\ 0.0239 \\ 0.0248 \\ 0.0220 \end{array}$	0.0225 0.0243 0.0248 0.0258 0.0234	
Zn^{2+}	0.0064	0.0219	0.0207	0.0226	0.0075	0.0223	0.0227	0.0231	

Table S5: RCPs electronic densities GLDA-M complexes where (M= Mn, Co, Fe, Ni, Cu and Zn)

Ring1 :7-member cycle (Metal-Oxygen16-four carbon-Nitrogen),

Ring2 : 5-member cycle (Metal-Oxygen14-two carbon-Nitrogen)

Ring3 : 5-member cycle (Metal-Oxygen12-tow carbon-Nitrogen)

Ring4 : 5-member cycle (Metal-Oxygen17-tow carbon-Nitrogen)

Table S6: Selected geometrical parameters of hydrated ions in octahedral geometry

1 note 501 Selected	There Bot Selected geometrical parameters of hydrated ions in octaned at geometry							
	Ionic radius [48]	M-O equatorial	M-O axial	Exp ^a				
Mn	0.830	2.205	2.206	2.175				
Fe	0.780	2.144	2.161	2.126				
Co	0.745	2.117	2.109	2.092				
Ni	0.690	2.086	2.087	2.056				
Cu	0.730	2.038	2.350	1.97 and 2.3				
Zn	0.740	2.123	2.123	2.092				

"RalfAkesson, Lars G. M. Pettersson, Magnus Sandstrom, and Ulf Wahlgred « Ligand Field Effects in the Hydrated Divalent and Trivalent Metal Ions of the First and Second Transition Periods » J. Am. Chem.Soc. 116 (1994) 8691-8704.

Table S /: Energies and free energy of the 4 HGLDA ^s isomers (kcal/mol)								
	I	Free energy		E				
	gas	solvent	gas	solvent				
O16(HGLDA) ³⁻	-3979.13	-4343.33	-4065.97	-4433.63				
O12(HGLDA) ⁻³	-3990.43	-4342.85	-4076.64	-4433.05				
O14(HGLDA) ⁻³	-3997.95	-4343.59	-4084.41	-4433.85				
O17(HGLDA) ⁻³	-4001.23	-4341.81	-4089.80	-4432.98				
(GLDA)-4	-3762.62	-4347.38	-3842.51	-4431.28				
N(HGLDA) ³⁻	-4021.98	-4360.98	-4110.56	-4451.94				

11 ~-10 c_{1} t_{1} t_{1} c_{1} D_{1} t_{2} 1 1/ 7) Г

Fig. S1: Dependence of M-O and M-N bond length with the late first-row transition series divalent metal ions for A and B structures, respectively. Both graphs agree with the Irving-Williams series.

Fig. S2: Dependence of DFT calculated 1,2 free energy both in gas phase and solution respectively, 3 complexation energy, 4 preorganization energy, 5 stabilization energy and 6 GLDA-metal charge transfer ΔQ on the atomic number of the late first-row transition series divalent metal ions for pentadentate complexes. All the graphs agree with the Irving-Williams series.

:

Fig. S3: Stability of HS complexes compared to LS ones (A structure)

Fig. S4: The thermodynamic cycle used for the complexation of the metal ion

Fig. S5: GLDA⁴⁻ Bader charges

Fig. S6: GLDA⁴⁻ NPA numerical charges

Fig. S7: GLDA⁴⁻ MEPS. The largest negative values are depicted in red, the lowest in blue.

*Fig. S8: GLDA*⁴⁻ *Dual descriptors with Negative regions are colored red and positive regions are colored blue.*

Fig. S9: Optimized octahedral geometry of hydrated ions with M = Mn, Fe, Co, Ni, Cu and Zn

