Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary Information

The robust peroxidase mimics within metal organic frameworks for

the sensitivity detection of H₂O₂ and glucose in serum

Peipei Yang^{1,#}, Qingfan Ren^{1,#}, Yuying Chen¹, Sixue Ouyang¹, Zhipeng Huang¹, Peng

Zhao^{2,} *, Jia Tao^{1,} *

¹School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China

²Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China

[#] Peipei Yang and Qingfan Ren contributed equally to this work.

Catalyst	Substrate	K _m	Ref
HRP	TMB	0.434	1
	H_2O_2	3.70	
ZnFeO ₄	TMB	0.85	2
	H_2O_2	1.66	
Fe ₃ O ₄	TMB	0.098	3
	H_2O_2	154	
Ni-MOF	TMB	0.365	4
	H_2O_2	2.49	
FePPOP-1	TMB	0.064	5
	H_2O_2	13.33	
S-rGO	TMB	0.374	6
	H_2O_2	0.594	
HSA@PDA/Fe	TMB	0.585	7
	H_2O_2	0.129	
Pt NCs	TMB	0.096	8
	H_2O_2	3.07	
This Work	TMB	0.1153	
	H_2O_2	0.26	

 Table S1. Comparison of the kinetic parameters of CuPd@MIL-101, HRP and other nanozyme.

nanozyme	Linear range	LOD (µM)	Ref
	(µM)		
HSA@PDA/Fe	0 -100	0.062	7
FeCo@C	1-240	1	9
S-rGO	0.1-1	0.042	6
Pt NCs	0-200	0.46	8
MoS ₂ -Pt ₇₄ Ag ₂₆	1-50	0.4	10
Fe ₃ O ₄ @MIL- 100(Fe)	0.2-30	0.089	11
MOF(Co/2Fe)	10-100	5	12
This work	0.25-700 μM	0.043	

Table S2. Comparison of different nanozymes for H_2O_2 detection in terms of linear range and LOD.

Figure S1. UV-Vis spectra of TMB + H_2O_2 with different materials: CuPd@MIL-101, CuPd, Cu@MIL-101 and MIL-101. ([TMB] = 0.5 mM; [H_2O_2] = 10 mM; CuPd@MIL-101, CuPd, Cu@MIL-101 and MIL-101: 10 µg mL⁻¹)

Figure S2. Selectivity analysis of system for the detection of glucose with common interferents. (Concentration of glucose and interferences: 400μ M).

Figure S3. TEM images of CuPd@MIL-101(A) before and (B) after catalysis

References

- [1] D. Porter, J. Bright and J. Biol. Chem., 1982, 258, 9913-9924.
- [2] L. Su, J. Feng, X. Zhou, C. Ren, H. Li and X. Chen. Anal. Chem., 2012, 84, 5753-5758.
- [3] L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang,
 S. Perrett and X. Yan. Nat. Nanotech., 2007, 2, 577-583.
- [4] J. Chen, Y. Shu, H. Li, Q. Xu and X. Hu. Talana, 2018,189, 254-261.
- [5] C. Cui, Q. Wang, Q. Liu, X. Deng, T. Liu, D. Li and X. Zhang. Senso. Actuat. B. Chem., 2018, 277, 86-94.
- [6] K. Wu, Y. Feng, Y. Li, L. Li, R. Liu and L. Zhu. Anal. Bioanal. Chem., 2020, 412, 5477-5487.
- [7] X. Liu, J. Qin, X. Zhang, L. Zou, X. Yang, Q. Wang, Y. Zheng, W. Mei and K. Wang. Nanoscale, 2020, Advance Article.
- [8] L. Jin, Z. Meng, Y. Zhang, S. Cai, Z. Zhang, C. Li, L. Shang and Y. Shen. ACS Appl. Mater. Interfaces., Just Accepted Manuscript.
- [9] T. Wu, Z. Ma, P. Li, Q. Lu, M. Liu, H. Li, Y. Zhang and S. Yao. Sensor. Actuato.
 B. Chem., 2019, 290, 357-363.
- [10] S. Cai, Q. Han, C. Qi, Z. Lian, X. Jia, R. Yang and C. Wang. Nanoscale, 2016, 8, 3685-3693.
- [11] Y. Wu, Y. Ma, G. Xu, F. Wei, Y. Ma and Q. Song. Sensor. Actuat. B. Chem.,

2017, 249, 195-202.

[12] H. Yang, R. Yang, P. Zhang, Y. Qin, T. Chen and F. Ye. Microchim. Acta., 2017, 184, 4629-4635.