Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary Information (ESI) for New Journal of Chemistry

This journal is (c) The Royal Society of Chemistry 2021

Synthesis of novel hedgehog-shaped Bi₂S₃ nanostructure for sensitive

electrochemical glucose biosensor

Feng Shi,^{a+} Yadong Xue,^{b+} Letian Hong,^{a+} Jiawen Cao,^a Juan Li,^a Min Jiang,^{c*} Xiaoya Hu,^a Zhanjun Yang,^{a*} Ming Shen^{a*}

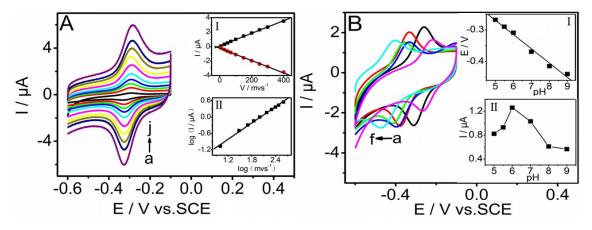
^aCollege of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002, PR China

^bCentral Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China

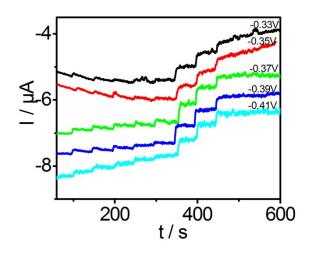
^cDepartment of Outpatient, Wujin Hospital Affiliated with Jiangsu University and Wujin Clinical College of Xuzhou Medical University, Changzhou City, Jiangsu Province, China

Experimental

Materials and Reagents: The GOx molecules (EC 1.1.3.4, 108 U mg⁻¹, from Aspergillus niger) were bought from Amresco. Glucose and Nafion were supplied by Sigma-Aldrich. Bismuth nitrate (Bi (NO₃)₃), cetyltrimethyl ammonium bromide (CTAB), trimellitic acid (C₉H₆O₆), thiourea (CH₄N₂S), anhydrous ethanol, sodium phosphate (Na₂HPO₄), sodium dihydrogen phosphate (NaH₂PO₄), potassium chloride (KCl), potassium ferricyanide (K₃Fe(CN)₆), and potassium ferrocyanide (K₄[Fe(CN)₆]·3H₂O) were purchased from Sinopharm Chemical Reagent Co., Ltd. Phosphate buffer solution (PBS, 0.1 mol·L⁻¹) was the mixture of Na₂HPO₄ and NaH₂PO₄ solutions, and its pH was adjusted by H₃PO₄ or NaOH solution. All reagents used in experiments were of analytical grade.


Apparatus: A CHI 852C electrochemical workstation was from Shanghai Chenhua Instrument Co. Ltd. (China), which was used to carry out electrochemical measurements. A three-electrode system, including a working electrode of glassy carbon electrode (GCE), a reference electrode of saturated calomel

electrode (SCE), and an auxiliary electrode of platinum wire were employed in the experiment. The cyclic voltametric tests were implemented at a scan rate of 100 mV·s⁻¹ in a cell with 10.0 mL PBS. All solution pH measurements were conducted on a S-25 digital pH-meter with glass combination electrode. A Hitachi S-4800 scanning electron microscope (Japan) was used to obtain scanning electron micrographs (SEM) at 15 kV of acceleration voltage. X-ray diffractometer spectra were measured by using polycrystalline X-ray diffractometer (XRD, D8 advance, Bruker AXS, Germany). Electrochemical impedance spectroscopy (EIS) was tested in a KNO₃ solution (0.1 mol·L⁻¹) including 5 mM of $K_3[Fe(CN)_6]/K_4[Fe(CN)_6]$ within a frequency range from 0.01 to 10 KHz. Fourier transform infrared (FT-IR) spectrum was recorded at a Tensor 27 spectrometer (Bruker Co., Germany).


Synthesis of hedgehog-shaped Bi_2S_3 nanostructure and electrochemical glucose biosensor: Hedgehog-shaped Bi_2S_3 nanostructures were prepared by a composite soft template method by a simple hydrothermal route according to previous research^{S1}. Firstly, 0.0210 g of trimellitic acid, 0.0365 g of CTAB, 0.3806 g of thiourea, 0.50 mL of bismuth nitrate solution (0.20 mol·L⁻¹) and 9.50 mL of distilled water were transferred into a 50 mL beaker. The system was ultrasonically mixed to obtain a homogeneous light yellow solution. The obtained solution was added to a Teflon-lined reaction kettle, which was placed in a constant-temperature oven for 12 h at 120 °C. After that, the obtained black precipitates were centrifuged and washed using ethanol and distilled water several times in sequence, and finally dried at 60 °C under vacuum for 12 h to obtain black powder product.

The surface of GCEs were polished with 0.3- μ m and 0.05- μ m alumina slurry (Buhler) in turn, and cleaned carefully using distilled water. High purity N₂ stream was used to dry GCEs at room temperature. Then, 1.0 mg of HS-Bi₂S₃ was weighted to distilled water (1.0 mL) and dispersed by ultrasonication. Next, GOx (1.0 mg) was added into 100 μ L of HS-Bi₂S₃ suspension above, and kept shaking for at least 15 min. Next, 5.0 μ L of the mixed solution was coated on clean electrodes and dried naturally at room temperature. To avoid the leakage of the GOx from modified GCE, 5.0 μ L of Nafion (0.5%) was coated on surface of GOx/HS-Bi₂S₃/GCE. The prepared Nafion/GOx/HS-Bi₂S₃/GCE was stored in a refrigerator at 4 °C.

Optimization of electrochemical detection conditions

Fig. *S1.* (A) cyclic voltammograms of the Nafion/GOx/HS-Bi₂S₃/GCE in 0.1 M pH 6.0 N₂-saturated PBS at 10, 20, 50, 80, 100, 150, 200 and 300 mV s⁻¹ (from a to j), inset I: plots of anodic and cathodic peak currents vs. scan rate, inset II: plot of logarithm of i_{pc} vs. logarithm of v; and (B) Cyclic voltammograms of the Nafion/GOx/HS-Bi₂S₃/GCE in N₂-saturated 0.1 M PBS with different pH values of (a-f) 5.0, 5.5 6.0, 7.0, 8.0 and 9.0 at a scan rate of 100 mV s⁻¹, inset I: plot of formal potential vs. pH, and inset II: plot of peak current vs. pH.

Fig. S2. Amperometric response of Nafion/GOx/Bi₂S₃/GCE at different potential to successive additions of glucose in a stirred 0.1 M pH 6.0 PBS.

Sample	Reference (mM)	Proposed method (mM)	Relative errors (%)		
1	4.64	4.43	- 4.5		
2	4.88	5.03	3.1		
3	5.19	4.80	- 7.5		
4	6.39	5.92	- 7.4		
5	10.55	10.84	2.7		

Table S1	Detection	results of	glucose	in	human	serum	samples

Reference

S1. M. L. Ye, F. Shi, M. Shen, W. F. Qin, C. L. Ren, Z. J. Yang, *Collioid. Surface. A* 2021, **613**, 126094.