Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

Cobalt disulfide supported on porous carbon foam for high performance

hydrogen evolution reaction

Yujin Su^a, Jinxin Liu^a, Jinling Zhong^b, Cuicui Zhang^c, Qing Li^{a*}, Aijun Li^a, Yantao Zhang^a, Haichao Jiang^a, Shanlin Qiao^a

^a College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China

^b Key Laboratory of Power Electronics for Energy Conservation and Motor Drive of Hebei Province, Department of Electrical Engineering, Yanshan University,

Qinhuangdao 066004, China

^c Shijiazhuang People's Medical College, Shijiazhuang 050000, China

*E-mail: <u>iccaslq@hebust.edu.cn</u>

Contents

Figure S1. SEM images of pure CoS₂.

Figure S2. TEM images of CoS₂-CF-4.

Figure S3. SEM image of CoS₂-CF-4 (a). Mapping images of (b) C, (c) Co, (d) N, (e) O, (f) P, and (g) S for CoS₂-CF-4.

Figure S4. The N₂ adsorption/desorption isotherms of CoS₂-CF-X (X=1, 2, 3, 4) composites (a), (c), (e) and (g). The calculated pore parameters of CoS₂-CF-X (X=1, 2, 3, 4) composites(b), (d), (f) and (h).

Figure S5. The N_2 adsorption/desorption curves (a) and pore size distribution with CF-X (X=1, 2, 3, 4) composites (b).

Figure S6. The N₂ adsorption/desorption isotherms of CF-X (X=1, 2, 3, 4) composites (a), (c), (e) and (g). The calculated pore parameters of CF-X (X=1, 2, 3, 4) composites (b), (d), (f) and (h).

Figure S7. The polarization curves of CoS_2 (a) and its corresponding Tafel plot (b), the charge transport resistance of CoS_2 (c).

Figure S8. The polarization curves of CoS_2 -CF-5 (a)and its corresponding Tafel polts (b)the charge transport resistance of CoS_2 -CF-5 (c).

Figure S9. The LSV curves of CF–X (X=1, 2, 3, 4, 5), the corresponding Tafel polts (b) and charge transport resistance (c).

Figure S10. SEM images of CoS₂-CF-4 composite after 4000 linear cycles.

Figure S11. Chronoamperometry test of CoS₂-CF-4.

Figure S12. The stability of carbon rod electrode instead of platinum plate.

Table S1. Elemental analysis of CoS₂-CF-4 composite.

Table S2. XPS spectra fitting result of CoS₂-CF-4 composite.

Table S3. The mechanism process in the electrochemical hydrogen evolution reaction (HER).

Table S3. HER activity of CoS₂- CF- X and CF-X composite.

Figure S1. SEM images of pure CoS₂.

Figure S2. TEM images of CoS_2 -CF-4. The red dotted circles are the CoS_2 loaded on the surface of carbon foam .

Figure S3. SEM image of CoS₂-CF-4 (a). Mapping images of (b) C, (c) Co, (d) N, (e) O, (f) P, and (g) S for CoS₂-CF-4.

Figure S4. The N₂ adsorption/desorption isotherms of CoS₂-CF-X (X=1, 2, 3, 4) composites (a), (c), (e) and (g). The calculated pore parameters of CoS₂-CF-X (X=1, 2, 3, 4) composites(b), (d), (f) and (h).

Figure S5. The N_2 adsorption/desorption curves (a) and pore size distribution with CF-X (X=1, 2, 3, 4) composites (b).

Figure S6. The N₂ adsorption/desorption isotherms of CF-X (X=1, 2, 3, 4) composites (a), (c), (e) and (g). The calculated pore parameters of CF-X (X=1, 2, 3, 4) composites (b), (d), (f) and (h).

Figure S7. The polarization curves of CoS_2 (a) and its corresponding Tafel polts (b), the charge transport resistance of CoS_2 (c).

Figure S8. The polarization curves of CoS_2 -CF-5 (a)and its corresponding Tafel polts (b)the charge transport resistance of CoS_2 -CF-5 (c).

Figure S9. The LSV curves of CF–X (X=1, 2, 3, 4, 5), the corresponding Tafel polts (b) and charge transport resistance (c).

Figure S10. SEM images of CoS₂-CF-4 composite after 4000 linear cycles.

Figure S11. Chronoamperometry test of CoS₂-CF-4.

Figure S12. The stability of carbon rod electrode instead of platinum plate.

Element	NetCounts	Weight %	Atom %
СК	2639	12.79	22.38
N K	256	2.30	3.45
ОК	9284	38.81	50.98
РК	85	0.17	0.12
S K	10248	22.41	14.69
Co K	2684	23.52	8.39
		100	100

Table S1. Elemental analysis of CoS2-CF-4 composite.

C 1s							
Peak Label	Posi	tion(eV)	FWH	M(eV)	Area		
C-C/C=C	284.	58	0.64		25261		
C-S	284.	94	0.64		14695		
C-O/C-N	285.	43	1.2		22424		
N 1s							
Peak Label	Posi	tion(eV)	FWHM(eV)		Area		
Oxidized N	402.	22	1.59	1.59 5140			
Graphitic N	400.	64	1.16	1.16		606	
S 2p							
Peak Label	Posi	tion(eV)	FWH	M(eV)	Area		
S-O	169.	4	1.46	1.46 162			
$S-2p_{1/2}$	163.	88	1.14	1.14		1112	
S-2p _{3/2}	163.	3.06 1.18			675		
Co 2p							
Peak Label	Posi	tion(eV)	FWH	M(eV)	Area		
satelite	804.	35	4.1		8148		
Co^{2+}	782.	43	2.5		19669		
Co^{2^+}	798.68		2.43	2.43 9317			
Co ²⁺	785.36		3.44	3.44		11178	
O 1s							
Peak Label	Posi	tion(eV)	FWH	M(eV)	Area		
C-OH	533.	38	1.17		36230		
C-O/ O-C-N	532.	44	0.81	0.81		45410	
Co-O	531.81 0.52			14121			
Р 2р							
Peak Label	Posi	tion(eV)	FWH	M(eV)	Area		
Oxidized-P	135.	13	1.59		609		
Graphitic N	134.09		2.03	2.03		403	
FWHM: full width half maximum.							
Atomic percent of CoS ₂ -CF-4 composite with XPS measurements.							
Materiales	C1s	N1s	S2p	Co2p	O1s	P2p	
Atomic %	76.69	2.51	3.83	0.38	16.36	0.58	

Table S2. XPS spectra fitting result of CoS₂-CF-4 composite.

Through XPS measurements, the atomic percent of C could be obtained of 76.69 %, which was calculated to the mass content of 66.92 wt %. Besides, we calculated the S

of 8.91 wt %and Co of 1.63 wt % through the XPS analysis. The mass percentage of N was 2.19 wt%.

Step	Reaction
Volmer step	$H^+ + e^- \rightarrow H_{ad}$
Heyrovsky step	$\mathrm{H}_{\mathrm{ad}} + \mathrm{H}^{\scriptscriptstyle +} + \mathrm{e}^{\scriptscriptstyle -} \!$
Tafel step	$2H_{ad} \rightarrow H_2$

Table S3. The mechanism process in the electrochemical hydrogen evolutionreaction (HER).

	Current Density Overpotential at		Tafel slope
Catalyst	$(j, mA \cdot cm^{-2})$	the corresponding j(mV)	$(mV \cdot dec^{-1})$
CoS ₂ -CF-1	10	273	93
CoS ₂ -CF-2	10	250	92
CoS ₂ -CF-3	10	157	82
CoS ₂ -CF-4	10	121	68
CoS ₂ -CF-5	10	135	72
CF-1	10	556	196
CF-2	10	531	188
CF-3	10	454	173
CF-4	10	401	166
CF-5	10	425	167

Table S4. HER activity of CoS₂- CF- X and CF–X composite