Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

A reversible near-infrared fluorescence probe for the monitoring

HSO₃⁻/H₂O₂ regulated cycles in vivo

Qiuying Song,^a Bo Zhou,^a Dongyu Zhang,^a Haijun Chi,^a Hongmin Jia,^{*a} Peixun Zhu,^{*b} Zhiqiang Zhang,^a Qingtao Meng^{*a} and Run Zhang^c

^a Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China.

E-mail: qtmeng@ustl.edu.cn; jhongmin66@163

^b School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China.

E-mail: zpx6311@126.com

^c Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia

Scheme S1 Synthetic procedure of the near-infrared out fluorescent probe (XC).

Fig. S2 ¹³C NMR of **XC** (DMSO-*d*₆).

Fig. S3 HR MS of XC.

Fig. S4 Fluorescence intensities of XC (10 μ M) at different time in PBS buffer (DMSO:HEPES=3:7, v/v; pH=7.4). The intensities were recorded at 684 nm, excitation was performed at 605 nm.

Fig. S5 The fluorescence intensity changes at 684 nm of **XC** (5 μ M) as a function of HSO₃⁻ concentration (1.66-16.66 μ M). Excitation was performed at 605 nm.

Fig. S6 Fluorescence spectra of XC (10 μ M) in the presence of various analytes (50 μ M) in HEPES aqueous buffer (DMSO:HEPES=3:7, 20 mM, pH=7.4). Excitation was performed at 605nm.

Fig. S7 (A) Absorption spectra and (B) fluorescence response of **XC** (10 μ M) towards various biological cations (40 μ M) in PBS buffer (DMSO:HEPES=3:7, v/v; pH=7.4): 1. Blank, 2. Zn²⁺, 3. Ni²⁺, 4. Al³⁺, 5. Cr³⁺, 6. Ca²⁺, 7. Mg²⁺, 8. Ba²⁺, 9. Li⁺, 10. K⁺, 11. Fe³⁺, 12. Co²⁺, 13. Cd²⁺, 14. Pb²⁺, 15. Na⁺, 16. HSO₃⁻. The fluorescence intensities were recorded at 684 nm, excitation at 605 nm.

Fig. S8 ¹H NMR of XC in the presence of HSO₃⁻ in DMSO-*d*₆/D₂O mixed solvent.

Fig. S9 HR MS of XC in the presence of HSO₃⁻.

Fig. S10 The fluorescence intensity changes at 684 nm of XC (5 μ M) as a function of HSO₃⁻ concentration in the aqueous solution of (A) white wine and (B) sugar samples. Excitation was performed at 605 nm.

Fig. S11 (A) Absorption and (B) fluorescence spectra response of **XC-SO₃** (10 μ M) towards various biological cations (50 μ M) in PBS buffer (DMSO:HEPES=3:7, v/v; pH=7.4): 1. Blank, 2. Zn²⁺, 3. Ni²⁺, 4. Al³⁺, 5. Cr³⁺, 6. Ca²⁺, 7. Mg²⁺, 8. Ba²⁺, 9. Li⁺, 10. K⁺, 11. Fe³⁺, 12. Co²⁺, 13. Cd²⁺, 14. Pb²⁺, 15. Na⁺, 16. mixed cations, 17. HSO₃⁻, 18. mixed cations + HSO₃⁻. The fluorescence intensities were recorded at 684 nm, excitation at 605 nm.

Fig. S12 Fluorescence spectra of **XC-SO₃** (5 μ M) in the presence of different amounts of H₂O₂ (6-20 μ M) in HEPES aqueous buffer (DMSO: HEPES=3:7, 20 mM, pH=7.4). The intensities were recorded at 684 nm, excitation was performed at 605 nm.

Fig. S13 The viability of HeLa cells incubated with different concentrations of XC (0-50 μ M) for 24 h.

Probes	Near- infrared	Reversible response	Selectivity	Detection limit	Response time	Detection of HSO ₃ - intake in live animals	Detection of HSO3 ⁻ in food samples	Test papers	Ref.
ASHTI	619nm	No	HSO ₃ -	0.27 μΜ	8min	No	No	Yes	1
QPCT	537nm/590 nm	No	HSO ₃ -	0.44 μΜ	7min	No	No	No	2
СРС	470nm/6 27nm	No	HSO ₃ ^{-/} SO ₃ ²⁻	18 nM	10min	No	No	No	3
РСРТ	568nm/6 48nm	No	HSO ₃ ^{-/} SO ₃ ²⁻	80.5 nM	15min	No	No	No	4
NBIS	534nm/610 nm	No	HSO ₃ ^{-/} SO ₃ ²⁻	16.2 nM	12min	No	No	No	5
Probe 1	445nm/570 nm	No	HSO3 ⁻	1.29 μmol/L	2min	No	No	No	6

Table S1. Comparison of this work with reported fluorescent probes for HSO₃⁻ detection.

Су-р- Np	527nm/590 nm	No	HSO ₃ -	98.1 nM	2.5min	No	No	No	7
BCVTI	608nm	No	HSO ₃ -	3.3 nM	4min	No	Yes	No	8
HDI	460nm/565 nm	No	HSO ₃ -/ SO ₃ ²⁻	80 nM	2min	No	No	No	9
DQ	620nm	No	HSO ₃ -	0.11 µM	15s	No	Yes	Yes	10
TFBN	504nm/644 nm	No	HSO ₃ -/ SO ₃ ²⁻	39 nM	3min	Yes	No	No	11
СМ-В А	462nm/568 nm	No	HSO ₃ -/ SO ₃ ²⁻	105 nM	20s	Yes	Yes	Yes	12
KQ-S O2	475nm/600 nm	No	HSO ₃ -	10.28 nM	1min	Yes	Yes	Yes	13
CMQ	640nm	No	HSO ₃ -	15.6 nM	5s	Yes	Yes	No	14
probe 1	450nm/594 nm	No	HSO3-	3.21 µM	2.5min	No	Yes	No	15
Ph-CN	460nm/660 nm	No	HSO ₃ -	0.16 µM	5s	Yes	No	No	16
probe 1	514nm	No	HSO ₃ -	22.8 nM	10s	No	No	No	17
Ru-azo	635nm	No	HSO ₃ -	0.69 µM	60min	No	Yes	No	18
Q5	485nm/650 nm	No	HSO ₃ -	89 nM	30min	No	No	No	19
BQDs	595nm/518 nm	No	HSO ₃ -	0.5 μΜ	10min	No	No	No	20
SNB	478nm/671 nm	No	HSO ₃ ^{-/} SO ₃ ²⁻	17 nM	50min	No	No	No	21
DCQN	660nm	No	HSO ₃ -	24 nM	6s	Yes	No	No	22
HEM- CO-Ph	615nm	No	HSO ₃ -/ SO ₃ ²⁻	137 nM	5min	No	No	No	23

ZACA	490nm/620 nm	No	HSO ₃ ^{-/} SO ₃ ^{2–}	15.6 nM	13min	No	No	No	24
Mito- HN	520nm/668 nm	No	HSO ₃ -/ SO ₃ ²⁻	0.17 μΜ	30s	Yes	No	No	25
MITO- TPE	455nm	No	HSO ₃ -	27.22 μΜ	20s	Yes	No	No	26
Нсу- Мо	596nm	No	HSO ₃ -	80 nM	30s	Yes	No	Yes	27
RBC	456nm/583 nm	No	HSO ₃ -/ SO ₃ ²⁻	6.6×10 ⁻⁸ M	35s	No	No	Yes	28
TBQN	514nm	No	HSO ₃ -	3.19×10 ⁻⁸ M	3min	No	No	No	29
XC	605nm/684 nm	HSO ₃ ^{-/} H ₂ O ₂	HSO ₃ -	1.02µM	within 5 seconds	Yes	Yes	Yes	This work

References:

1. L. Zou, J. Xu, X. Liu, X. Zhang, Y. Gao, G. Zhang and X. Duan, *Microchem. J.*, 2020, **153**, 104461.

2. J. Lia, Y. Gao, H. Guo, X. Li, H. Tang, J. Li and Y. Guo, Dyes Pigm., 2019, 163, 285-290.

3. W. Wang, X. Han, J. Liu, J. Miao and B. Zhao, Dyes Pigm., 2020, 173, 107892.

4. W. Sun, N. Li, Z. Li, Y. Yuan, J. Miao, B. Zhao and Z. Lin, Dyes Pigm., 2020, 182, 108658.

5. Z. Li, X. Cui, Y. Yan, Q. Che, J. Miao, B. Zhao and Z. Lin, Dyes Pigm., 2021, 188, 109180.

6. K. Bi, R. Tan, R. Hao, L. Miao, Y. He, X. Wu, J. Zhang and R. Xu, *Chinese Chem Lett.*, 2019, **30**, 545-548.

7. R. Shen and Y. Qian, J Photoch Photobio A., 2020, 387, 112110.

8. F. Li, L. Zou, J. Xu, F. Liu, X. Zhang, H. Li, G. Zhang and X. Duan, *J Photoch Photobio A*, 2021, **411**, 113201.

9. L. Wang, W. Yang, Y. Song, Y. Gu and Y. Hu, Spectrochim Act A, 2020, 225, 117495.

10. C. Zhang, L. Han, Q. Liu, M. Liu, B. Gu and Y. Shen, Spectrochim Act A, 2021, 253, 119561.

11. W. Shen, H. Xu, J. Feng, W. Sun, G. Hu, Y. Hu and W. Yang, *Spectrochim Act A*, 2021, **263**, 120183.

12. X. He, W. Xu, F. Ding, C. Xu, Y. Li, H. Chen and J. Shen, J. Agric. Food Chem., 2020, 68, 11774–11781.

13. G. Yuan, L. Zhou, Q. Yang, H. Ding, L. Tan and L. Peng, J. Agric. Food Chem., 2021, 69,

4894-4902.

- 14. X. Bao, X. Cao, Y. Yuan, B. Zhou and C. Huo, J. Agric. Food Chem., 2021, 69, 4903-4910.
- 15. X. Mu, J. Zhu, L. Yan and N. Tang, Luminescence, 2021, 36, 923-927.

16. T. Zhang, L. Zhu, Y. Ma and W. Lin, Analyst, 2020, 145, 1910–1914.

17. M. Wu, X. Wei, Y. Wei, R. Sun, Y. Xu and J. Ge, Anal. Methods, 2019, 11, 4334-4340.

18. W. Zhang, X. Xi, Y. Wang, Z. Du, C. Liu, J. Liu, B. Song, J. Yuan and R. Zhang, *Dalton Trans.*, 2020, **49**, 5531–5538.

19. J. Zhu, F. Qin, D. Zhang, J. Tang, W. Liu, W. Cao and Y. Ye, *New J. Chem.*, 2019, **43**, 16806–16811.

20. J. Zhao, Y. Peng, K. Yang, Y. Chen, S. Zhao and Y. Liu, RSC Adv., 2019, 9, 41955–41961.

21. Y. Yan, X. He, J. Miao and B. Zhao, J. Mater. Chem. B, 2019, 7, 6585-6591.

22. L. Zeng, T. Chen, B. Chen, H. Yuan, R. Sheng and G. Bao, *J. Mater. Chem. B*, 2020, **8**, 1914–1921.

23. L. Jia, L. Niu, L. Wang, X. Wang and Q. Yang, J. Mater. Chem. B, 2020, 8, 1538-1544.

24. Y. Yan, Q. Wu, Q. Che, M. Ding, M. Xu, J. Miao, B. Zhao and Z. Lin, *Analyst*, 2020, 145, 2937–2944.

25. M. Lv, Y. Zhang, J. Fan, Y. Yang, S. Chen, G. Liang and S. Zhang, *Analyst*, 2020, **145**, 7985–7992.

26. X. Yang, J. Tang, D. Zhang, X. Han, J. Liu, J. Li, Y. Zhao and Y. Ye, *Chem. Commun.*, 2020, **56**, 13217–13220.

27. R. Zhou, G. Cui, Y. Hu, Q. Qi, W. Huang and L. Yang, RSC Adv., 2020, 10, 25352–25357.

28. D. Yang, X. He, X. Wu, H. Shi, J. Miao, B. Zhao and Z. Lin, *J. Mater. Chem. B*, 2020, **8**, 5722–5728.

29. Y. Liu, L. Wu, Y. Dai, Y. Li, S. Qi, J. Du, Q. Yang, H. Xu and Y. Li, *Anal. Methods*, 2021, **13**, 3667-3675.

Probes	Near-infrared	Reversible response	Selectivity	Detection limit	Response time	Ref.
BOD-H ₂ O ₂	725nm	No	H_2O_2	4.3×10 ⁻⁷ mol/L	-	1
ХН-2	638 nm	No	H_2O_2	91 nM	40min	2
BT-HP	550nm	No	H_2O_2	1.5×10 ⁻⁷ M	120s	3
Cy-H ₂ O ₂	790 nm	No	H_2O_2	65 nM	10min	4

Table S2. Comparison of this work with reported fluorescent probes for H₂O₂ detection.

DCHP	653nm	No	H_2O_2	5.3 µM	15min	5
Cou-CHO	502nm	No	H_2O_2	31 nM	20min	6
RhB-NIR	730nm	No	H_2O_2	61 nM	10min	7
GCP	482nm/706nm	No	H_2O_2	0.33 μΜ	15min	8
BPN-TOB	471nm	No	H_2O_2	67 nM	10min	9
	HSO ₃ -:392nm	Ne	<u>исо -/и о</u>	HSO3 ⁻ :120 nM	HSO3-:1min	10
псу-ОВ	H ₂ O ₂ :520nm	INO	HSO ₃ /H ₂ O ₂	H ₂ O ₂ :70 nM	H ₂ O ₂ :20min	10
BTFMB	542nm	No	H_2O_2	109 nM	45min	11
ТРР-НСу-	TPP-HCy-			TPP-HCy-BOH:0.348		
BOH and	BOH:716nm	No	H_2O_2	μΜ	-	12
НСу-ВОН	HCy-BOH:706nm			НСу-ВОН:1.064 μМ		
QX-B	772nm	No	H_2O_2	0.17 μΜ	5min	13
GW-1	549nm	No	H_2O_2	-	30min	14
Mito-Bor	730nm	No	H_2O_2	23 nM	25min	15
ттор	Viscosity: 666nm	No	Viscosity/	0.141.umal/I	-	16
IIIB	H ₂ O ₂ : 586nm	INO	H_2O_2	0.141 µm0/L		10
QVB-B	464nm/580nm	No	H_2O_2	-	60min	17
TC-H ₂ O ₂	920nm	No	H_2O_2	-	30min	18
TTPy-H ₂ O ₂	590nm	No	H_2O_2	0.25 μΜ	50min	19
NPT-H ₂ O ₂	550nm/425nm	No	H_2O_2	12.8 nM	40s	20
XC-SO ₃	605nm/684nm	HSO ₃ ^{-/} H ₂ O ₂	H ₂ O ₂	0.84 μΜ	16 min	This work

References:

1. X. Li, Y. Zhao, J. Zheng and T. Zhang, J. Lumin., 2021, 229, 117642.

- L. Xu, Y. Zhang, L. Zhao, H. Han, S. Zhang, Y. Huang, X. Wang, D. Song, P. Ma, P. Ren and Y. Sun, *Talanta*, 2021, 233, 122578.
- 3. M. Ren, D. Dong, Q. Xu, J. Yin, S. Wang and F. Kong, Talanta, 2021, 234, 122684.
- 4. X. Huang, Z. Li, Z. Liu, C. Zeng and L. Hu, Dyes Pigm., 2019, 165, 518–523.
- Y. He, L. Miao, L. Yu, Q. Chen, Y. Qiao, J. Zhang and Y. Zhoua, *Dyes Pigm.*, 2019, 168, 160–165.
- 6. F. Wu, H. Yu, Q. Wang, J. Zhang, Z. Li and X. Yang, Dyes Pigm., 2021, 190, 109335.
- 7. T. Gu, S. Mo, Y. Mu, X. Huang and L. Hu, Sensor Actuat B, 2020, 309, 127731.
- 8. W. Jiang, W. Wang, J Liu, Y. Li and C. Li, Sensor Actuat B, 2020, 313, 128054.
- 9. P. Hou, S. Chen, G. Liang, H. Li and H. Zhang, Spectrochim. Acta A, 2020, 236, 118338.
- 10. R. Zhou, L. Niu, Y. Hu, Q. Qi, W. Huang and L. Yang, *Spectrochim. Acta A*, 2021, 248, 119226.
- 11. H. Zhang, D. Tian, Y. Zheng, F. Dai and B. Zhou, Spectrochim. Acta A, 2021, 248, 119264.
- 12. X. Chen, X. Ren, L. Zhang, Z. Liu and Z. Hai, Anal. Chem., 2020, 92, 14244-14250.
- W. Wang, W. Jiang, G. Mao, M. Tan, J. Fei, Y. Li and C. Li, *Anal. Chem.*, 2021, 93, 3301–3307.
- 14. J. Su, S. Zhang, C. Wang, M. Li, J. Wang, F. Su and Z. Wang, ACS Omega, 2021, 6, 14819–14823.
- 15. X. Song, S. Bai, N. He, R. Wang, Y. Xing, C. Lv and F. Yu, ACS Sens., 2021, 6, 1228-1239.
- L. Fan, Q. Zan, X. Wang, S Wang, Y. Zhang, W Dong, S Shuang and C. Dong, *Chin. J. Chem.*, 2021, **39**, 1303–1309.
- G. Yang, T. Zhu, D. Wang, Z. Liu, R. Zhang, G. Han, X. Tian, B. Liu, M. Han and Z. Zhang, *Chem. Commun.*, 2021, 57, 6628–6631.
- 18. L. Chen, J. Chen, Y. Fang, F. Zeng and S. Wu, Chem. Commun., 2021, 57, 7842-7845.
- 19. Q. Wu, Y. Li, Y. Li, D. Wang and B. Tang, Mater. Chem. Front., 2021, 5, 3489–3496.
- R. Zhou, Q. Peng, D. Wan, C. Yu, Y. Zhang, Y. Hou, Q. Luo, X. Li, S. Zhang, L. Xie, P. Ou and Y. Peng, *RSC Adv.*, 2021, 11, 24032–24037.