Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting information

A ultrastable cucurbit[6]uril-based multifunctional supramolecular assembly for efficient detection of nitroaromatic compounds and antibiotics

Jing Guo, Lulu Shi, Mei Liu*

School of Chemistry and Life Science, Advanced Institute of materials Science, Changchun University

of Technology, Changchun 130012, China

* Corresponding author Email addresses: liumei@ccut.edu.cn.

Compound	
Empirical formula	$C_{144}H_{136}N_{76}O_{56}S_4Zn_2$
Formula weight	4086.26
Crystal system	Monoclinic
Space group	C2/m
a (Å)	31.654(5)
b (Å)	20.851(3)
c (Å)	15.488(2)
α (°)	90
β (°)	94.774(5)
γ (°)	90
$V(Å^3)$	10186(3)
Z	2
$D_c/(g \text{ cm}^{-3})$	1.332
μ /(mm ⁻¹)	1.486
F(000)	4208.0
θ range (°)	5.08 - 101.482
R _{int}	0.0752
Parameters	655
T (K)	170
goodness of fit	1.127
Limiting indices	$-31 \leq h \leq 29$
	$-20 \leq k \leq 20$
	$-15 \leqslant 1 \leqslant 15$
R indices $[I > 2\sigma(I)]$	R1=0.1130,wR2=0.3023
R indices (all data)	R1=0.1248,wR2=0.3129

 $Table \ S1 \ {\rm Crystal} \ data \ {\rm and} \ {\rm structure} \ refinement \ for \ 1$

MOFs	Solvent	K _{sv}	detection	References
		(M ⁻¹)	limit	
${[Zn_8(L)_6(\mu_3-OH)_4(H_2O)_6]} \cdot (D$	DMSO	2.5×10^{4}		[30]
$MF) \cdot (H_2O)_{2.5}_n$				
${[Zn_3(mtrb)_3(btc)_2] \cdot 3H_2O}_n$	MeOH	3.26×10^{4}	0.26 μM	[31]
${[Cd_3(SDB)_3(TIB)](H_2O)_2(1,$	H ₂ O	2.43×10^{4}	0.15 μM	[32]
4 -dioxane)(G)x} _n				
$\{[Zn_2(L)(DMF)_3]\cdot 2DMF\cdot 2H_2\}$	DMF	2.61×10^{4}	0.64 ppm	[33]
O}				
${[Cd_4(L)_2(L_2)_3(H_2O)_2](8DMF)}$	EtOH	3.89×10^{4}	1.98 ppm	[34]
)(8H ₂ O)} n				
1	H ₂ O	2.86×10^{4}	71 ppb	This work

Table S2 Performance of reported MOFs for detecting TNP

Table S3 Performance of reported MOFs for detecting OTC and TC

MOFs	Solven	Ksv	LOD	Species	Ref.
	t				
$[Zn_3(L)_2(1,4-bimb)_3]_n$	H ₂ O	$1.99 \times 10^5 \mathrm{M}^{-1}$	0.15 μM	TC	[35]
$[Zn(bpydb)(bimmb)_{0.5}]_n(1)$		$1.28 \times 10^5 \mathrm{M}^{-1}$	104 ppb		
	H ₂ O			TC	[36]
${[Zn_2(bpydb)_2(bimb)] \cdot [Zn]}$	1120	$7.96 \times 10^4 \mathrm{M}^{-1}$	168 ppb		[20]
$(bpydb)(bimb)] \cdot H_2O_n(2)$					
ROD-Zn1		$2.75 \times 10^4 \mathrm{M}^{-1}$	0.11 μM		
	H ₂ O			ТС	[37]
ROD-Zn2		$2.67 \times 10^4 \mathrm{M}^{-1}$	0.12 μM		[- ·]
		2 10 10/11	1.05.16	OTO	
		$2.18 \times 10^{4} \mathrm{M}^{-1}$	1.95 nM	OIC	
$[Tb(HL)L(H_2O)]_n$	H ₂ O	$1.20 \times 10^4 M^{-1}$	2.77 mM	ТС	[38]
		1.39 × 10 M	2.// IIIVI		
		$3.59 \times 10^4 \mathrm{M}^{-1}$	153 ppb	OTC	
					This
1	H ₂ O	$5.00 \times 104 M^{-1}$	140	тс	11115
		$3.99 \times 10^{-1} M^{-1}$	148 ppb		work

Fig. S1 (a) The PXRD pattern spectra of 1 and the simulated spectra. (b) The SEM

Fig. S2 TGA curves of 1 under anatmosphere of N_2 (5 °Cmin⁻¹)

Fig. S3 Luminescence spectra of 1 dispersed in water with different times.

Fig. S4 PXRD patterns of 1 after soaked in water with different times.

Fig. S5 Luminescence spectra of 1 dispersed in aqueous solution with different pH value.

Fig. S6 PXRD patterns of 1 after soaked in aqueous solution with different pH value.

Fig. S7 The luminescent spectrum of 1 and HQDS in solid states.

Fig. S8 PXRD patterns of 1 after soaked in common solvents.

Fig. S9 Relative intensities of 1 to various NACs. The black bars represent the

emission intensities of **1** in water, the red bars represent the emission intensities of **1** in the individual aqueous solutions of NACs (1 mM), and the blue bars represent a change of the emission intensities upon subsequent addition of TNP (1 mM) to the above NACs solutions.

Fig. S10 Selected molecular structures of antibiotic substances.

Fig. S11 Relative intensities of **1** to various antibiotics. The black bars represent the emission intensities of **1** in water, the red bars represent the emission intensities of **1** in the individual aqueous solutions of antibiotics (1 mM), and the blue bars represent

a change of the emission intensities upon subsequent addition of TC (1 mM) to the above antibiotics solutions.

Fig. S12. (a) The recyclability tests of 1 in water. (b) The PXRD patterns of 1 after five cycles.

Fig. S13 (a) Theoretical HOMO and LUMO energies for HQDS, 4-NP and TNP; (b) UV-vis absorption spectra of 4-NP and TNP and emission spectra of 1 in water.

Fig. S14 (a)Theoretical HOMO and LUMO energies for HQDS, OTC and TC; (b) UV-visible spectra of antibiotics in water; (c) UV-vis absorption spectra of OTC and TC and excitation spectra of **1** in water.