Copolymers based on trialkylsilylethynyl-phenyl substituted benzodithiophene building block for efficient organic solar cells

Haifen Liu,*^a Zixuan Zhu,^a Huafeng Li,^b Weili Fan,^c Kaihua Ning,^c Chao Su,^c Jingpeng Ren^a and Lixin Wang^{*c}

^aSchool of Quality and Technical Supervision, Hebei University, Baoding 071002, China *E-mail: liuhaifen89@163.com(H. Liu)

^bLucky Film Co., Ltd., Baoding 071054, China

^cCollege of Physics Science and Technology, Hebei University, Baoding 071002, China *E-mail: wanglx2015@hbu.edu.cn (L. Wang)

Instruments

The NMR spectra were collected on a Bruker AVANCEIII 600 MHz spectrometer with tetramethylsilane (TMS) (δ 0 ppm) as an internal standard. The mass spectra (FT-MS) were conducted on a Thermo Fisher Scientific LTQ FT Ultra mass spectrometer. UV–vis absorption spectra were recorded using a Hitachi U-3000 spectrometer. XRD diffraction data was measured on Bruker D8 Advance. TGA curves were acquired through Netzsch STA449 F3 instrument. The electrochemical measurements were performed in a deoxygenated solution of tetra-n-butylammonium hexafluorophosphate (0.1 M) in CH₃CN with a CHI604E electrochemical workstation, wherein a Pt plate working electrode coated with samples, a Pt wire counter electrode, and a Ag/AgNO₃ reference electrode were applied. TEM images were obtained by a FEI Tecnai G² F 20 S-TWIN with an accelerating voltage of 200 kV.

Hole mobility measurement

Hole-only diodes were fabricated using the structure: ITO/PEDOT:PSS/blend/MoO₃/Ag. Mobilities were extracted by fitting the current density-voltage curves under dark using the space-charge-limited current (SCLC) method. The J–V curves of the devices were plotted as $J^{0.5}$ versus V using the equation: $J = (9/8)\varepsilon_{r}\varepsilon_{0}\mu(V^{2}/L^{3})$, where ε_{0} is the permittivity of free space (8.85 $\times 10^{-12}$ F/m), ε_{r} is the dielectric constant of the polymer (assumed to be 3), μ is the hole mobility, V is the voltage drop across the device, and L is the average active layer thickness. $V = V_{appl} - V_{bi}$, where V_{appl} is the applied voltage to the device, and V_{bi} is the built-in voltage due to the difference in work function of the two electrodes ($V_{bi} = 0.4$ V).

Table S1 Influence of annealing temperature on the photovoltaic performance of PSCs based on $PW30_H$:IDIC with a D/A ratio of 1:1.5.

Polymer	Annealing temperature [°C]	$V_{ m oc}$ [V]	$[\mathrm{mA~cm}^{-2}]$	FF [%]	PCE _{max} (PCE _{ave}) ^c [%]
PW30 _H	90 110	0.904 0.910	12.27 12.70	53.0 54.0	$5.87 (5.80 \pm 0.07) 6.24 (6.00 \pm 0.24) (6.00 \pm 0.00) $
	130	0.874	12.30	52.9	$5.69(5.60 \pm 0.09)$

Fig. S1 Thermogravimetric analysis curves of the polymers $PW30_H$ and $PW30_L$.

Fig. S2 XRD diffraction patterns of the films of $PW30_{\rm H}$ and $PW30_{\rm L}$ coated on glass.