Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary Material (ESI) for New Journal of Chemistry.

Supporting information

Construction of Bi₂MoO₆/g-C₃N₄ heterostructure with enhanced

visible light photocatalytic performance

Guangxin Zhang*, Jianguang Fang, Haoran Xu, Jingmiao Hu

School of Materials Science and Engineering, Shandong University of Science and Technology,

Qingdao 266590, PR China

Fig. S1. XPS spectra of Bi_2MoO_6 (a) survey, (b) Bi4f, and (c) Mo 3d.

Fig. S2. Free radical quenching experiments of BiC-1 for RhB degradation.

Fig. S3. PL spectra of $g-C_3N_4$ and BiC-1.

Fig. S4. Reusability of BiC-1 for RhB degradation.

Photocatalysts	Light source	Dosage	Initial concentration	Degradation efficiency	Reference
Bi ₂ MoO ₆ /g-C ₃ N ₄	300 W xenon lamp (>400 nm)	0.4 g/L	10 mg/L RhB	75% (120 min)	[1]
Bi ₂ MoO ₆ /g-C ₃ N _{4-x}	300 W xenon lamp	0.1 g/L	10 mg/L RhB	95% (60 min)	[2]
Bi ₂ MoO ₆ -g-C ₃ N ₄	500 W xenon lamp (≥420 nm)	0.4 g/L	10 mg/L RhB	97% (50 min)	[3]
Bi ₂ MoO ₆ /g-C ₃ N ₄	50 W LED light (410 nm)	1 g/L	10 mg/L MB	97% (40 min)	[4]
Bi ₂ MoO ₆ /g-C ₃ N ₄	300 W xenon lamp (≥400 nm)	0.8 g/L	1.25×10 ⁻⁵ mol/L RhB	99% (40 min)	[5]
Bi_2MoO_6/g - C_3N_4	400 W xenon lamp (≥420 nm)	0.4 g/L	10 mg/L RhB	98% (70 min)	[6]
Bi ₂ MoO ₆ /g-C ₃ N ₄	300 W xenon lamp (>420 nm)	1 g/L	1×10⁻⁵ mol/L RhB	72% (360 min)	[7]
g-C ₃ N ₄ /C@Bi ₂ MoO ₆	500 W xenon lamp (>420 nm)	1 g/L	15 mg/L β- naphthol	72% (150 min)	[8]
Bi ₂ MoO ₆ /g-C ₃ N ₄	300 W xenon lamp (>420 nm)	0.2 g/L	10 mg/L naproxen	83% (60 min)	[9]
Bi ₂ MoO ₆ /Bi/g-C ₃ N ₄	300 W xenon lamp (>420 nm)	0.75 mg/cm ²	200 ppm HCHO	96.15% (600 min)	[10]
Bi ₂ MoO ₆ /g-C ₃ N ₄	300 W xenon lamp (>400 nm)	1 g/L	10 mg/L RhB	96.4% (16 min)	This work

Table S1 Comparison of photocatalytic performance of Bi₂MoO₆/g-C₃N₄ photocatalysts

References

[1] K. Xia, H. Chen, M. Mao, Z. Chen, F. Xu, J. Yi, Y. Yu, X. She, H. Xu, H. Li, *Phys. Status Solidi A*, 2018, **215**, 1800520.

[2] B. Zhou, Q. Liu, S. Zhang, M. Sanjrani, H. Yang, S. Xia, Chem. Phys. Lett., 2020, 748 137381.

[3] Q. Liang, M. Zhang, C. Yao, C. Liu, S. Xu, Z. Li, J. Photochem. Photobiol., A, 2017, 332, 357-363.

[4] J. Lv, K. Dai, J. Zhang, L. Geng, C. Liang, Q. Liu, G. Zhu, C. Chen, *Appl. Surf. Sci.*, 2015, **358**, 377-384.

[5] W. Chen, G.-R. Duan, T.-Y. Liu, S.-M. Chen, X.-H. Liu, *Mater. Sci. Semicond. Process.*, 2015, **35**, 45-54.

[6] H. Li, J. Liu, W. Hou, N. Du, R. Zhang, X. Tao, Appl. Catal., B, 2014, 160-161, 89-97.

[7] K. Xiao, H. Huang, N. Tian, Y. Zhang, Mater. Res. Bull., 2016, 83, 172-178.

[8] T. Ma, J. Wu, Y. Mi, Q. Chen, D. Ma, C. Chai, Sep. Purif. Technol., 2017, 183, 54-65.

[9] K. Fu, Y. Pan, C. Ding, J. Shi, H. Deng, J. Photochem. Photobiol., A, 2021, 412, 113235.

[10] Y. Wu, M. Song, Z. Chai, J. Huang, X. Wang, ACS Sustainable Chem. Eng., 2020, 8, 7710-7720.