Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

1	
2	
3	A COMBINED APPROACH OF ELECTRONIC SPECTROSCOPY AND
4	QUANTUM CHEMICAL CALCULATIONS TO ASSESS MODEL MEMBRANES
5	OXIDATION PATHWAYS
6	
7	J.M. Faroux ^a , A. Borba ^b , M.M. Ureta ^a , E.E. Tymczyszyn ^c , A. Gomez-Zavaglia ^{a*}
8	
9	
10	^a Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata) RA1900, La
11	Plata, Argentina
12	^b CIEPQPF - Department of Chemical Engineering, University of Coimbra, P-3030-790 Coimbra, Portugal
13	^c Laboratorio de Microbiología Molecular - Departamento de Ciencia y Tecnología - Universidad Nacional de Quilmes,
14	Bernal, Buenos Aires - Argentina
15	
16	
17	ELECTRONIC SUPPLEMENTARY INFORMATION
18	
19	

^{*}Corresponding author: Andrea Gómez-Zavaglia

Address: Calle 47 y 116 La Plata, Buenos Aires. Argentina (1900)

Telephone: +54(221)4890741

Fax: +54(221)4249287

E-mail: angoza@qui.uc.pt

Fig. ESI 1 Raw UV spectra of lipids exposed to H₂O₂ for: 0
hours (dot line); 0.5 hours (dash dot dot line); 2 hours (dash dot line); 2 hours (dash dot line); 3 hours (full line). Blue
spectra correspond to liposomes containing BHT and exposed for 3 hours to H₂O₂. A. 1 mM H₂O₂; B. 4 mM H₂O₂.

33 Fig. ESI 2 Optimized structures of linoleic acid (LA) and its proposed oxidation products. Different letters

indicate different compounds, and different colors correspond to different routes. Outline colors correspond to

the same pattern as that used in Fig. 4.

Fig. ESI 3 Theoretical electronic spectra obtained at the DFT(B3LYP) 6-311++G(d,p) level of theory. Each
 panel corresponds to a different pathway.

 Table ESI 1 - Adjustment parameters of the dose-response behavior of the area of the

 234 nm band with regard to the exposure time.^a

Parameter	1 mM H ₂ O ₂	4 mM H ₂ O ₂
A _{min}	0.1797	0.3073
A _{max} (fixed)	7.7	7.7
t ₅₀ (50% peroxidation) (hours)	2.428 ± 0.028	1.572 ± 0.030
Peroxidation rate (slope) (hours ⁻¹)	1.228 ± 0.094	3.258 ± 0.221
R ²	0.9982	1

Proposed pathways ^a		Compounds ^b	Total Energy ^c	Dipole Moment (Debye)	Polarizability (α)	Symmetry (Brint Course)	Rotational constant (MHz)		
		r	(KJ/mol)		(a.u.)	(Point Group)	Α	В	С
Initial compound		LA	-2245915.21	1.38	234.17	C_1	279.63	63.67	52.45
		Μ	-2245934.86	1.56	246.65	C_1	550.78	45.08	42.28
Α		Ν	-2245935.31	1.56	247.15	C_1	1109.95	39.87	39.23
В		Α	-2443467.06	1.34	237.83	C_1	264.67	62.39	51.58
	Pathway 1	Ε	-2443487.85	2.52	251.98	C_1	496.39	43.43	40.72
		Ι	-2443468.60	2.12	248.62	C_1	391.69	48.52	43.91
		В	-2443465.50	3.04	238.12	C_1	264.21	62.22	51.45
	Pathway 2	F	-2443480.82	2.90	250.69	C_1	558.30	44.22	41.64
		J	-2443489.43	1.72	251.58	C_1	1201.62	38.40	37.95
		С	-2443445.38	2.04	237.93	C_1	250.30	62.70	51.18
	Pathway 3	G	-2443481.45	2.02	250.51	C_1	404.05	45.91	41.86
		K	-2443481.77	2.74	250.92	C_1	708.39	40.45	39.14
		0	-2443466.02	2.14	238.29	C_1	243.95	64.44	51.95
	Pathway 4	Р	-2443489.66	2.02	250.88	C_1	590.22	43.66	41.59
		Q	-2443471.58	2.90	242.55	C_1	748.18	40.40	39.20
		D	-2443466.18	2.91	238.05	\mathbf{C}_1	246.11	64.59	52.26
	Pathway 5	Н	-2443468.51	2.68	247.31	C_1	210.70	68.68	52.85
		L	-2443487.74	3.05	252.42	\mathbf{C}_1	839.39	40.08	39.25

Table ESI 2 Total energy, dipole moments, polarizability, symmetry point groups and rotational constants for dienes/trienes and hydroxy fatty acids proposed as oxidation products, calculated at the B3LYP/6-311++G(d,p) level of theory.

^a Proposed pathways for the oxidation of linoleic acid (LA). A: Formation of conjugated dienes/trienes. B: Formation of hydroxy fatty acids. Letters **A** to **N** denote the proposed final products. Different pathways indicate different oxidation reactions. See Fig. 4. ^b Compounds are denoted with the same nomenclature as in Fig. 4.

^c Total energy is the electronic energy, including the zero-point vibrational energy.

Table ESI 3 Predicted vertical excitation energies and associated orbitals transitions major contributions together with oscillator strengths, f, for the dienes/trienes and hydroxy fatty acids proposed as oxidation products, obtained by TD-DFT at the B3LYP/6-311++G(d,p) level of theory after ground-state geometry optimization using the same functional and basis set.

Compounds ^b	$\lambda_{max}^{S_0 \to S_n}$ (nm)	Oscillator strength f	Transition and orbitals major contributions	
LA	206.76	0.1224	$S_0 \rightarrow S_5$	HOMO->LUMO (12%), HOMO->L+4 (41%), HOMO->L+5 (26%)
\mathbf{M}	240.91	0.4687	$S_0 \rightarrow S_1$	HOMO->LUMO (51%), HOMO->L+1 (11%), HOMO->L+3 (13%), HOMO->L+4 (15%)
Ν	239.76	0.4646	$S_0 \rightarrow S_1$	HOMO->LUMO (47%), HOMO->L+3 (35%)
Α	223.32	0.0753	$S_0 \rightarrow S_7$	HOMO->L+6 (17%), HOMO->L+9 (56%)
Ε	261.58	0.2208	$S_0 \rightarrow S_2$	HOMO->LUMO (11%), HOMO->L+1 (36%), HOMO->L+2 (10%), HOMO->L+5 (30%)
Ι	229.81	0.3595	$S_0 \rightarrow S_4$	HOMO->LUMO (15%), HOMO->L+1 (39%), HOMO->L+2 (14%), HOMO->L+4 (20%)
В	237.02	0.0389	$S_0 \rightarrow S_2$	HOMO->L+3 (30%), HOMO->L+5 (37%), HOMO->L+6 (22%)
F	253.84	0.6091	$S_0 \rightarrow S_2$	HOMO->LUMO (64%), HOMO->L+2 (16%)
J	259.37	0.4277	$S_0 \rightarrow S_2$	HOMO->LUMO (56%), HOMO->L+5 (27%)
С	209.15	0.0660	$S_0 \rightarrow S_4$	HOMO->L+1 (20%), HOMO->L+3 (28%), HOMO->L+4 (17%), HOMO->L+5 (13%)
G	251.82	0.6810	$S_0 \rightarrow S_2$	HOMO->LUMO (73%), HOMO->L+2 (11%)
К	252.18	0.6924	$S_0 \rightarrow S_2$	HOMO->LUMO (73%), HOMO->L+1 (10%)
0	235.85	0.0405	$S_0 \rightarrow S_2$	HOMO->L+3 (15%), HOMO->L+4 (60%), HOMO->L+5 (10%), HOMO->L+6 (10%)
Р	259.99	0.3570	$S_0 \rightarrow S_2$	HOMO->LUMO (51%), HOMO->L+5 (36%)
Q	274.80	0.1676	$S_0 \rightarrow S_1$	HOMO->LUMO (92%)
D	224.52	0.0321	$S_0 \rightarrow S_6$	HOMO->L+1 (16%), HOMO->L+4 (36%), HOMO->L+5 (18%), HOMO->L+7 (12%)
Н	229.44	0.4748	$S_0 \rightarrow S_5$	HOMO->LUMO (22%), HOMO->L+1 (10%), HOMO->L+2 (21%), HOMO->L+3 (28%)
L	257.41	0.2965	$S_0 \rightarrow S_4$	HOMO->L+1 (55%), HOMO->L+3 (11%)

^aCompounds are denoted with the same nomenclature as in Fig. 4