Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021 New Journal of Chemistry

Supporting Information

Porphyrin Bearing Phenothiazine Pincers as Hosts for Fullerene Binding via Concave-Convex Complementarity: Synthesis and Complexation Study

Kanika Jain,^a Naresh Duvva,^b Tapta Kanchan Roy,^{*c} Lingamallu Giribabu.^{*bd} and Raghu Chitta,^{*ae}

^aDepartment of Chemistry, School of Chemical Sciences & Pharmacy, Central University of Rajasthan, Kishangarh, Dist. Ajmer, Rajasthan-305817, India.

^bPolymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, Telangana, India.

^cDepartment of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), Dist: Samba, Jammu and Kashmir 181143, India

^dAcademy of Scientific and Innovative Research, Ghazianbad 201002, India

^eDepartment of Chemistry, National Institute of Technology Warangal, Hanamkonda, Dist: Hanamkonda, Telangana 506004, India.

	Table of Contents	Page No.		
	Experimental section (Synthesis details; Methods and Instrumentation)	S5-S7		
Fig. S1	¹ H NMR spectrum of 10-(2-bromoethyl)-10H-phenothiazine (1) in CDCl ₃ .	S8		
Fig. S2	¹ H NMR spectrum 3-(2-(10 <i>H</i> -phenothiazin-10-yl)ethoxy)benzaldehyde (2a)in			
	CDCl ₃ .			
Fig. S3	¹ H NMR spectrum of 4-(2-(10 <i>H</i> -phenothiazin-10-	S 9		
	yl)ethoxy)benzaldehyde(2b)in CDCl ₃ .			
Fig. S4	¹ H NMR spectrum of 5, 10, 15, 20-tetra-3-(2-(10H-phenothiazin-10-yl)ethoxy)	S9		
	phenyl free base porphyrin, <i>m</i> -(PTZ)4-H ₂ P in CDCl ₃ .			
Fig. S5	¹ H NMR spectrum of 5, 10, 15, 20-tetra-4-(2-(10H-phenothiazin-10-yl)ethoxy)	S10		
	phenyl free base porphyrin, <i>p</i> -(PTZ)4-H ₂ P in CDCl ₃ .			
Fig. S6	¹ H NMR spectrum of 10-Hexyl-10H-phenothiazine, Hexyl-PTZ in CDCl ₃ .	S10		
Fig. S7	¹ H NMR spectrum of 5, 10, 15, 20-tetra phenyl free base porphyrin, H ₂ TPP in	S11		
	CDCl ₃ .			
Fig. S8	HRMS (ESI) spectrum of 10-(2-bromoethyl)-10H-phenothiazine (1).	S11		
Fig. S9	ESI-MS spectrum of 3-(2-(10 <i>H</i> -phenothiazin-10-yl)ethoxy)benzaldehyde (2a).	S12		
Fig. S10	HRMS (ESI) spectrum of 4-(2-(10H-phenothiazin-10-yl)ethoxy)benzaldehyde	S12		
	(2b).			
Fig. S11	MALDI-TOF spectrum of 5, 10, 15, 20-tetra-3-(2-(10H-phenothiazin-10-	S13		
	yl)ethoxy) phenyl free base porphyrin, <i>m</i> -(PTZ)4-H2P.			
Fig. S12	MALDI-TOF spectrum of 5, 10, 15, 20-tetra-4-(2-(10H-phenothiazin-10-	S13		
	yl)ethoxy) phenyl free base porphyrin, <i>p</i> -(PTZ) ₄ -H ₂ P.			
Fig. S13	ESI-MS spectrum of 10-(2-bromoethyl)-10H-phenothiazine, (Hexyl-PTZ).	S14		
Fig. S14	Absorption titration of m -(PTZ) ₄ -H ₂ P (2.53 × 10 ⁻⁶ M) with increasing additions	S14		
	of C ₆₀ in 1,2-DCB.			
Fig. S15	Absorption titration of m -(PTZ) ₄ -H ₂ P (2.53 × 10 ⁻⁶ M) with increasing additions	S15		
	of C ₆₀ in PhCN.			
Fig. S16	Absorption titration of p -(PTZ)4-H ₂ P (2.21 × 10 ⁻⁶ M) with increasing additions	S15		
	of C ₆₀ in toluene.			
Fig. S17	Absorption titration of p -(PTZ) ₄ -H ₂ P (2.21 × 10 ⁻⁶ M) with increasing additions	S16		
	of C ₆₀ in 1,2-DCB.			
Fig. S18	Absorption titration of p -(PTZ) ₄ -H ₂ P (2.21 × 10 ⁻⁶ M) with increasing additions	S16		
	of C ₆₀ in PhCN.			
Fig. S19	Absorption titration of (a) m -(PTZ) ₄ -H ₂ P (2.53 × 10 ⁻⁶ M), (b) p -(PTZ) ₄ -H ₂ P	S17		
	$(2.21 \times 10^{-6} \text{ M})$, and (c) H ₂ TPP $(3.41 \times 10^{-6} \text{ M})$ with increasing additions of			
	C ₇₀ in toluene, 1,2-DCB, and PhCN.			
Fig. S20	Fluorescence titration of m -(PTZ) ₄ -H ₂ P (2.53 × 10 ⁻⁶ M, λ_{ex} : 515 nm) with	S18		
	increasing additions of C_{60} in toluene. The inset shows (a) the Benesi-			
	Hildebrand plot of the change of fluorescence intensity at 650 nm, and (b) Job			
	plot of continuous variation for $m-(PTZ)_4-H_2P:C_{60}$ in toluene. Y-axis is the			
	difference between the fluorescence intensities of the complex and m -(PTZ)4-			
	H ₂ P at 650 nm.			

Fig. S21	Fluorescence titration of m -(PTZ) ₄ -H ₂ P (2.53 × 10 ⁻⁶ M, λ_{ex} : 515 nm) with		
	increasing additions of C ₆₀ in 1,2-DCB. The inset shows the Benesi-Hildebrand		
	plot of the changes of fluorescence intensity at 650 nm.		
Fig. S22	Fluorescence titration of <i>m</i> -(PTZ) ₄ - H ₂ P (2.53 × 10 ⁻⁶ M, λ_{ex} : 515 nm) with	S19	
	increasing additions of C60 in PhCN. The inset shows the Benesi-Hildebrand		
	plot of the change of fluorescence intensity at 650 nm.		
Fig. S23	Fluorescence titration of p -(PTZ)4-H ₂ P (2.21 × 10 ⁻⁶ M, λ_{ex} : 515 nm) with	S20	
	increasing additions of C_{60} in toluene. The inset shows the Benesi-Hildebrand		
	plot of the change of fluorescence intensity at 656 nm.		
Fig. S24	Fluorescence titration of p -(PTZ)4-H ₂ P (2.21 × 10 ⁻⁶ M, λ_{ex} : 515 nm) with	S20	
	increasing additions of C ₆₀ in 1,2-DCB. The inset shows the Benesi-Hildebrand		
	plot of the change of fluorescence intensity at 658 nm.		
Fig. S25	Fluorescence titration of p -(PTZ)4-H ₂ P (2.21 × 10 ⁻⁶ M, λ_{ex} : 515 nm) with	S21	
	increasing additions of C_{60} in PhCN. The inset shows the Benesi-Hildebrand		
	plot of the change of fluorescence intensity at 658 nm.		
Fig. S26	Fluorescence titration of m -(PTZ) ₄ -H ₂ P (2.53 × 10 ⁻⁶ M, λ_{ex} : 515 nm) with	S21	
	increasing additions of C ₇₀ in 1,2-DCB. The inset shows the Benesi-Hildebrand		
	plot of the change of fluorescence intensity at 651 nm.		
Fig. S27	Fluorescence titration of m -(PTZ)4-H ₂ P (2.53 × 10 ⁻⁶ M, λ_{ex} : 515 nm) with	S22	
	increasing additions of C_{70} in PhCN. The inset shows the Benesi-Hildebrand		
	plot of the change of fluorescence intensity at 650 nm.		
Fig. S28	Fluorescence titration of p -(PTZ)4-H ₂ P (2.21 × 10 ⁻⁶ M, λ_{ex} : 515 nm) with	S22	
	increasing additions of C ₇₀ in toluene. The inset shows the Benesi-Hildebrand		
	plot of the change of fluorescence intensity at 656 nm.		
Fig. S29	Fluorescence titration of p -(PTZ)4-H ₂ P (2.21 × 10 ⁻⁶ M, λ_{ex} : 515 nm) with	S23	
	increasing additions of C ₇₀ in 1,2-DCB. The inset shows the Benesi-Hildebrand		
	plot of the change of fluorescence intensity at 658 nm.		
Fig. S30	Fluorescence titration of p -(PTZ)4-H ₂ P (2.21 × 10 ⁻⁶ M, λ_{ex} : 515 nm) with	S23	
	increasing additions of C ₇₀ in PhCN. The inset shows the Benesi-Hildebrand		
	plot of the change of fluorescence intensity at 658 nm.		
Table S1	Binding constants (reported) of the porphyrin receptors with C_{60} and C_{70} in	S24	
E- 021	different solvents.	525	
F1g. 531	Stern-Volmer quenching plots of fluorescence quenching at 650 nm of m -	825	
	$(\mathbf{F} \mathbf{I} \mathbf{Z})_4$ - H ₂ F and <i>p</i> -(F I Z)_4- H ₂ F by C ₇₀ and C ₆₀ in (a) 1,2-DCB and (b) FIICN.		
Fig. \$22	A _{ex} : 515 IIII. ¹ U NMD spectrum of (a) m (PT7), U , D (0.62 × 10 ⁻⁶ moles) in CDC1, and (b)	\$26	
г ig. 532	(e) upon addition of 1.0, 1.5, 4.0, 4.5 eq. of \mathbf{C}_{co} in CDCl ₂ , and (b)-	520	
Fig. \$22	¹ H NMR spectrum of (a) $\boldsymbol{n}_{-}(\mathbf{PTZ})_{4-}\mathbf{H}_{2}\mathbf{P}$ (1.2 × 10 ⁻⁶ moles) in CDCl ₂ and (b)	\$26	
11g. 000	(e) upon addition of 0.5, 1,0, 2,0, 3,0 eq. of C_{co} in CDCl ₂	520	
Fig. \$34	¹ H NMR spectrum of (a) p -(PTZ) ₄ -H ₂ P (1.2 × 10 ⁻⁶ moles) in CDCl ₂ and (b)-	\$26	
1.8.024	(e) upon addition of 1.0, 1.5, 3.0, 3.5 eq. of C_{70} in CDCl ₂	520	
Fig. S35	¹ H NMR spectrum of (a) H ₂ TPP (0.62×10^{-6} moles) in CDCl ₃ , and (b)-(e) upon	S27	

	addition of 0.5, 2.0, 3.0, 4.0 eq. of C ₆₀ in CDCl ₃ .			
Fig. S36	¹ H NMR spectrum of (a) H_2TPP (0.62 × 10 ⁻⁶ moles) in CDCl ₃ , and (b)-(e) upon			
	addition of 0.5, 2.0, 3.0, 4.0 eq. of C70 in CDCl ₃ .			
Fig. S37	B3LYP-D3/6-31G(d) calculated structures of the free porphyrin receptors, <i>p</i> -(PTZ)4-H2P (a & b) and <i>m</i> -(PTZ)4-H2P (c & d) optimized to bind C ₆₀ and C ₇₀ respectively.	S28		
Fig. S38	Cyclic voltammograms of (a) oxidation and (b) reduction of the indicated compounds in 1,2-DCB containing 0.1 M (n -C ₄ H ₉) ₄ NClO ₄ . The concentrations of the compounds were held at ~ 1 mM; scan rate = 100 mVs ⁻¹ .	S29		
Fig. S39	Fluorescence decay curve of (a) m -(PTZ)4-H2Pin absence and presence of 0.5 – 2.0 eq. of C ₆₀ , and p -(PTZ)4-H2P in presence and absence of (b) 0.5 – 1.5 eq. of C ₆₀ and (c) 0.5 – 1.5 eq. of C ₇₀ , $\lambda_{ex} = 415$ nm in PhCN.	S30		
	References	S31		

Supporting Information

1. Experimental Section

1.1 Synthesis Details

10-(2-bromoethyl)-10H-phenothiazine (1):¹ Sodium hydride (60% mineral oil, 1.2 g, 50.2 mmol) was taken in DMF and to this, a solution of phenothiazine (5 g, 0.025 mol) in DMF was added at 0°C under nitrogen while stirring. The reaction mixture was stirred at 0°C for 30 min. and raised to RT and stirred for 1 h under nitrogen. The reaction was again cooled to 0°C, 1,2-dibromoethane (47 g, 0.25 mol) was added and the reaction mixture was stirred at 90°C for 12 h under nitrogen. The reaction mixture was stirred at 90°C for 12 h under nitrogen. The reaction mixture was stirred at 90°C for 12 h under nitrogen. The reaction mixture was stirred at 90°C for 12 h under nitrogen. The reaction mixture was cooled to room temperature, washed with water, and extracted with ethyl acetate. The organic phase was washed with brine solution, dried over Na₂SO₄ and filtered. The crude mixture was purified using silica gel column chromatography and the desired compound was obtained using petroleum ether: ethyl acetate (20:1, v/v) as the eluent. Evaporation of the solvent under reduced pressure yielded the titled compound as a white solid. Yield: 3.8 g (49%). ¹H NMR (500 MHz, CDCl₃): δ (in ppm): 7.20-7.15 (m, 4H, *phenothiazine-aromatic H*), 6.96 (t, 2H, *J* = 10 Hz, *phenothiazine-aromatic H*), 6.84 (d, 2H, *J* = 12 Hz, *phenothiazine-aromatic H*), 4.29 (t, 2H, *J* = 10 Hz, *Br-CH*₂), 3.64 (t, 2H, *J* = 9.5 Hz, *N-CH*₂). HRMS (ESI) (m/z): [M⁺] Calcd for C₁₄H₁₂BrNS: 306.22; found: 306.2210.

4-(2-(10*H***-phenothiazin-10-yl)ethoxy)benzaldehyde (2b):**¹ To a solution of 4-hydroxy benzaldehyde (0.1 g, 0.8 mmol) in DMF (50 mL), dry potassium carbonate (0.9 g, 6.5 mmol) was added and stirred under argon for 30 min. Then **1** (0.5 g, 1.6 mmol) was added and the reaction mixture was stirred at 90°C for 3 h, cooled to room temperature and the solvent was evaporated. To this concentrated crude mixture, water was added and was extracted using ethyl acetate. The organic layer was evaporated and the crude compound was purified by silica gel column chromatography using petroleum ether:ethylacetate (20:1, v/v) as an eluent. Evaporation of the solvent yielded the titled compound as a light yellow solid. Yield: 0.4 g, (71%). ¹H NMR (500 MHz, CDCl₃): δ (in ppm): 9.88 (s, 1H, *-CHO*), 7.82 (d, 2H, *J* = 8.5 Hz, *phenyl-aromatic H*), 7.17 (d, 4H, *J* = 8.0 Hz, *phenyl-aromatic 2H & phenothiazine-aromatic 2H*), 7.00-6.94 (m, 6H, *phenothiazine-aromatic H*), 4.38 (s, 4H, *O-CH*₂ & *N-CH*₂). HRMS (ESI): (m/z): [M⁺] Calcd for C₂₁H₁₇NO₂S: 347.4320; [M+H]⁺ found: 348.4410.

10-Hexyl-10H-phenothiazine (Hexyl-PTZ):² NaH (1.20 g, 30.10 mmol, 60%) was washed with petroleum ether in 250 mL round bottomed flask and petroleum ether was decanted after washing. To this phenothiazine (5.00 g, 25.09 mmol) dissolved in 120 mL of DMF was added using dropping

funnel and the mixture was stirred at room temperature under nitrogen for 1 h. Then the reaction mixture was cooled using ice and 1-bromohexane (4.97 g, 30.10 mmol) was added drop wise. The resulting reaction mixture was stirred overnight at room temperature. The progress of the reaction was monitored using TLC. Upon consumption of the limiting reagent phenothiazine the reaction mixture was quenched using ammonium chloride (0.1M, 10 mL) and ice water. The reaction mixture was then extracted using ethyl acetate. The reaction mixture was washed using brine solution and passed through sodium sulphate (Na₂SO₄). The solvent was removed under pressure on the rotary evaporator and the residue was subjected to silica gel column chromatography using petroleum ether as eluent to give the titled compound as a transparent viscous liquid (6.39 g, 90%). ¹H NMR (500 MHz, CDCl₃): δ (in ppm): 7.17- 7.13 (m, 4H, *phenothiazine-H*), 6.93- 6.86 (m, 4H, *phenothiazine-H*), 3.84 (t, 2H, J = 6.7Hz, $-CH_2$), 1.82- 1.79 (m, 2H, $-CH_2$), 1.32- 1.28 (m, 6H, $-CH_2$), 0.89- 0.88 (m, 3H, $-CH_3$). ESI-MS (m/z): [M⁺] Calcd for C₁₈H₂₁NS: 283; [M+H]⁺ found: 284.

H₂**-5,10,15,20-tetraphenylporphyrin** (**H**₂**TPP**): This control compound was synthesized as per the method reported in literature.³ A solution of (1.0 g, .9.5 mmol) of benzaldehyde and (0.63 g, 9.5 mmol) of pyrrole in 100 mL of propionic acid was refluxed for an hour. The progress of the reaction was monitored using TLC and upon complete consumption of the aldehyde, propionic acid was removed by distillation under reduced pressure. The resulting solid was wash with methanol and was subjected to further purification by silica gel column chromatography. The compound was eluted using 1:1 (v/v) chloroform and pet ether.Yield: 0.87 g (16%). ¹H NMR (500 MHz, CDCl₃): (δ in ppm): 8.86 (s, 8H, β-pyrrole), 8.22-8.20 (m, 8H, *o*-phenyl *H*), 7.77-7.72 (m, 12H, *m* and *p*-phenyl *H*) and -2.77 (s, 2H, *NH*).

1.2 Methods and Instrumentation

1.2.1. Computational details. The molecular size of all four clusters are considerably large (total, 1186 and 1246 number of electrons) for any level of quantum chemical calculations and hence a balance between computational cost and accuracy is required to deal such systems. Here, the first-principles based viable DFT based method is used which is computationally faster yet accurate to determine molecular structures. Due to high flexibility in the molecular systems, all four types of molecules are expected to give several low energy conformers. Hence a systematic conformational analysis is performed using DFT based hybrid B3LYP^{4, 5} method. In the first step, several initial pool of structures are freely optimized at B3LYP/3-21G(d) level of theory as suggested by Zandler and

D'Souza.⁶ It is found that several initial guess structures with little different orientations converge to the same equilibrium structure. Next, a few such lower energy structures near the global minima were chosen from the pool of optimized structures. Considering the several weak interactions present in the four structures, Grimme's dispersion correction B3LYP-D3 with BJ-damping ^{7, 8} in conjunction with 3-21G(d) basis sets was applied for further optimization. It is found that dispersion corrections has a prominent effect on the determination of the structures of this type of molecules. Starting from the optimized structures obtained without dispersion corrections, different orientations following the rotations of the dihedral angels of phenothiazine moieties were found after considering dispersion corrections which apparently addressed better weak interactions. The better description offered by the dispersion corrections to the multiple non-covalent interactions with fullerene present in the systems results more reliable structures. Among all the calculated structures, the lowest energy conformers were determined for each of the four cases. Finally, to further validate the reliability of the calculated structures, higher basis 6-31G(d) in conjunction with B3LYP-D3 method were carried out and similar quality of structures were obtained for both the basis sets.

The binding energy between the phenothiazine moiety and fullerene in vacuum is defined by the formula:

 ΔE (binding energy) = E (fullerene-PTZ moiety)-[E (fullerene in vacuum)+E (free PTZ in vacuum)]

These calculations were performed considering the cluster geometries are rigid, such that when the non-covalent interactions are withdrawn, the fragments retain the same geometries that they possess in the equilibrium structure. All the calculations were performed in Gaussian 16 program suit.⁹

Fig.S1. ¹H NMR spectrum of10-(2-bromoethyl)-10H-phenothiazine (1) in CDCl₃.

Fig. S2. ¹H NMR spectrum 3-(2-(10*H*-phenothiazin-10-yl)ethoxy)benzaldehyde (2a) in CDCl₃.

Fig.S3. ¹H NMR spectrum of 4-(2-(10*H*-phenothiazin-10-yl)ethoxy)benzaldehyde (**2b**) in CDCl₃.

Fig.S4. ¹H NMR spectrum of 5, 10, 15, 20-tetra-3-(2-(10H-phenothiazin-10-yl)ethoxy) phenyl free base porphyrin, *m*-(**PTZ**)₄-**H**₂**P** in CDCl₃.

Supporting Information 8.08 8.16 9:36 8.01 7.1 7.2 ppm 4.6 ppm **6** 00:00 00:00 7 10 8 5 0 6 3 -1 2 i -2 ppm

Fig.S5. ¹H NMR spectrum of 5, 10, 15, 20-tetra-4-(2-(10H-phenothiazin-10-yl)ethoxy) phenyl free base porphyrin, *p*-(**PTZ**)₄-**H**₂**P** in CDCl₃.

Fig.S6. ¹H NMR spectrum of 10-Hexyl-10H-phenothiazine, Hexyl-PTZ in CDCl₃.

Fig.S7. ¹H NMR spectrum of 5, 10, 15, 20-tetra phenyl free base porphyrin, H₂TPP in CDCl₃.

Fig.S8. HRMS (ESI) spectrum of 10-(2-bromoethyl)-10H-phenothiazine (1).

Fig. S9. ESI-MS spectrum of 3-(2-(10*H*-phenothiazin-10-yl)ethoxy)benzaldehyde(2a).

Fig.S10. HRMS (ESI) spectrum of 4-(2-(10*H*-phenothiazin-10-yl)ethoxy)benzaldehyde (2b).

Fig. S11. MALDI-TOF spectrum of 5, 10, 15, 20-tetra-3-(2-(10H-phenothiazin-10-yl)ethoxy) phenyl free base porphyrin, *m*-(**PTZ**)₄-**H**₂**P**.

Fig. S12. MALDI-TOF spectrum of 5, 10, 15, 20-tetra-4-(2-(10H-phenothiazin-10-yl)ethoxy) phenyl free base porphyrin, *p*-(**PTZ**)₄-**H**₂**P**.

Fig. S13. ESI-MS spectrum of 10-(2-bromoethyl)-10H-phenothiazine, (Hexyl-PTZ).

Fig. S14. Absorption titration of m-(**PTZ**)₄-**H**₂**P** (2.53 × 10⁻⁶ M) with increasing additions of C₆₀ in 1,2-DCB.

Fig. S15. Absorption titration of m-(**PTZ**)₄-**H**₂**P** (2.53 × 10⁻⁶ M) with increasing additions of C₆₀ in PhCN.

Fig. S16. Absorption titration of p-(**PTZ**)₄-**H**₂**P** (2.21 × 10⁻⁶ M) with increasing additions of C₆₀ in toluene.

Fig. S17. Absorption titration of p-(**PTZ**)₄-**H**₂**P** (2.21 × 10⁻⁶ M) with increasing additions of C₆₀ in 1,2-DCB.

Fig. S18. Absorption titration of p-(**PTZ**)₄-**H**₂**P** (2.21 × 10⁻⁶ M) with increasing additions of C₆₀ in PhCN.

Fig. S19. Absorption titrations of (a) m-(PTZ)₄-H₂P (2.53 × 10⁻⁶ M) and (b) p-(PTZ)₄-H₂P (2.21 × 10⁻⁶ M) with increasing additions of C₇₀ in toluene, 1,2-DCB, and PhCN.

Fig. S20. (a) Fluorescence titration of m-(PTZ)4-H₂P (2.53 × 10⁻⁶ M, λ_{ex} : 515 nm) with increasing additions of C₆₀ in toluene. The inset shows the Benesi-Hildebrand plot of the change of fluorescence intensity at 650 nm, and (b) Job plot of continuous variation for m-(PTZ)4-H₂P:C₆₀ in toluene. Y-axis is the difference between the fluorescence intensities of the complex and m-(PTZ)4-H₂P:C₆₀ m.

Fig. S21. Fluorescence titration of m-(PTZ)₄-H₂P (2.53 × 10⁻⁶ M, λ_{ex} : 515 nm) with increasing additions of C₆₀ in 1,2-DCB. The inset shows the Benesi-Hildebrand plot of the changes of fluorescence intensity at 650 nm.

Fig. S22. Fluorescence titration of m-(PTZ)4-H₂P (2.53 × 10⁻⁶ M, λ_{ex} : 515 nm) with increasing additions of C₆₀ in PhCN. The inset shows the Benesi-Hildebrand plot of the change of fluorescence intensity at 650 nm.

Fig. S23. Fluorescence titration of p-(**PTZ**)₄-**H**₂**P** (2.21 × 10⁻⁶ M, λ_{ex} : 515 nm) with increasing additions of C₆₀ in toluene. The inset shows the Benesi-Hildebrand plot of the change of fluorescence intensity at 656 nm.

Fig. S24. Fluorescence titration of p-(PTZ)₄-H₂P (2.21 × 10⁻⁶ M, λ_{ex} : 515 nm) with increasing additions of C₆₀ in 1,2-DCB. The inset shows the Benesi-Hildebrand plot of the change of fluorescence intensity at 658 nm.

Fig. S25. Fluorescence titration of p-(**PTZ**)4-H₂P (2.21 × 10⁻⁶ M, λ_{ex} : 515 nm) with increasing additions of C₆₀ in PhCN. The inset shows the Benesi-Hildebrand plot of the change of fluorescence intensity at 658 nm.

Fig. S26. Fluorescence titration of m-(**PTZ**)₄-**H**₂**P** (2.53 × 10⁻⁶ M, λ_{ex} : 515 nm) with increasing additions of C₇₀ in 1,2-DCB. The inset shows the Benesi-Hildebrand plot of the change of fluorescence intensity at 651 nm.

Fig. S27. Fluorescence titration of m-(PTZ)₄-H₂P (2.53 × 10⁻⁶ M, λ_{ex} : 515 nm) with increasing additions of C₇₀ in PhCN. The inset shows the Benesi-Hildebrand plot of the change of fluorescence intensity at 650 nm.

Fig. S28. Fluorescence titration of p-(PTZ)₄-H₂P (2.21 × 10⁻⁶ M, λ_{ex} : 515 nm) with increasing additions of C₇₀ in toluene. The inset shows the Benesi-Hildebrand plot of the change of fluorescence intensity at 656 nm.

Fig. S29. Fluorescence titration of p-(**PTZ**)₄-**H**₂**P** (2.21 × 10⁻⁶ M, λ_{ex} : 515 nm) with increasing additions of C₇₀ in 1,2-DCB. The inset shows the Benesi-Hildebrand plot of the change of fluorescence intensity at 658 nm.

Fig. S30. Fluorescence titration of p-(**PTZ**)4-H₂P (2.21 × 10⁻⁶ M, λ_{ex} : 515 nm) with increasing additions of C₇₀ in PhCN. The inset shows the Benesi-Hildebrand plot of the change of fluorescence intensity at 658 nm.

Table S1: Binding constants (rep	orted) of the porphyrin recept	cors with C_{60} and C_{70} in different
solvents.		

Host	Solvent	Binding Constant (M ⁻¹)	
		C ₆₀	C ₇₀
(18-crown-6) ₄ -H ₂ P ^[1]	PhCN	$5.6 imes10^{3}$ [a]	
	1,2-DCB	6.9×10^{3} [a]	
	toluene	$7.9 imes10^{3}{}^{\mathrm{[a]}}$	
$(\text{coronene})_4$ -H ₂ P ^[2]	toluene-d ₈	$(5.4\pm0.2) imes10^{3}{}^{[b]}$	
$(pyrene)_8$ -ZnP ^[3] (1:1 model)	toluene-d ₈	$K_1 = (2.30 \pm 0.01) \times 10^{3}$ [c]	$K_1 = (2.69 \pm 0.02) \times 10^{4} \text{[c]}$
$(pyrene)_{8}-H_{2}P^{[3]}$ (1:2 model)		$K_1 = (1.49 \pm 0.01) \times 10^{3 [c]}$	$K_1 = (1.40 \pm 0.05) \times 10^{4 \text{ [c]}}$
		$K_2 = (3.71 \pm 0.02) \times 10^{2} \text{[c]}$	$K_2 = (3.50 \pm 0.13) \times 10^{3 \text{ [c]}}$

 F. D'Souza, R. Chitta, S. Gadde, M. E. Zandler, A. L. McCarty, A. S. Sandanayaka, Y. Araki, O. Ito, J. Phys. Chem. A., 2006, 110, 4338-4347; [a]: calculated from fluorescence titration.

[2] C. M. Alvarez, H. Barbero, S. Ferrero, D. Miguel, J. Org. Chem., 2016, 81, 6081-6086; [b]: calculated from ¹H NMR titration.

[3] S. Ferrero, H. Barbero, D. Miguel, R. Garcia-Rodriguez, C. M. Alvarez, J. Org. Chem., 2019, 84, 6183-6190;
 [c]: calculated from ¹H NMR titration.

Fig. S31. Stern-Volmer quenching plots of fluorescence quenching at 650 nm of m-(**PTZ**)₄-**H**₂**P** and p-(**PTZ**)₄-**H**₂**P** by **C**₇₀ and **C**₆₀ in (a) 1,2-DCB and (b) PhCN. λ_{ex} : 515 nm.

Fig. S32. ¹H NMR spectrum of (a) m-(**PTZ**)₄-**H**₂**P** (0.62 × 10⁻⁶ moles) in CDCl₃, and (b)-(e) upon addition of 1.0, 1.5, 4.0, 4.5 eq. of C₆₀ in CDCl₃.

Fig. S33. ¹H NMR spectrum of (a) p-(**PTZ**)4-H₂P (1.2×10^{-6} moles) in CDCl₃, and (b)-(e) upon addition of 0.5, 1.0, 2.0, 3.0 eq. of C₆₀ in CDCl₃.

Fig. S34. ¹H NMR spectrum of (a) p-(**PTZ**)₄-**H**₂**P** (1.2×10^{-6} moles) in CDCl₃, and (b)-(e) upon addition of 1.0, 1.5, 3.0, 3.5 eq. of **C**₇₀ in CDCl₃.

Fig. S35.¹H NMR spectrum of (a) H_2TPP (0.62 × 10⁻⁶ moles) in CDCl₃, and (b)-(e) upon addition of 0.5, 2.0, 3.0, 4.0 eq. of C₆₀ in CDCl₃.

Fig. S36. ¹H NMR spectrum of (a) H_2TPP (0.62 × 10⁻⁶ moles) in CDCl₃, and (b)-(e) upon addition of 0.5, 2.0, 3.0, 4.0 eq. of C₇₀ in CDCl₃.

Fig. S37. B3LYP-D3/6-31G(d) calculated structures of the free porphyrin receptors, *p*-(**PTZ**)4-H₂**P** (a & b) and *m*-(**PTZ**)4-H₂**P** (c & d) optimized to bind C₆₀ and C₇₀ respectively.

Fig. S38. Cyclic voltammograms of (a) oxidation and (b) reduction of the indicated compounds in 1,2-DCB containing 0.1 M (n-C₄H₉)₄NClO₄. The concentrations of the compounds were held at ~ 1 mM; scan rate = 100 mVs⁻¹.

Fig. S39. Fluorescence decay curves of (a) m-(PTZ)4-H₂Pin absence and presence of 0.5 – 2.0 eq. of C₆₀, and p-(PTZ)4-H₂P in presence and absence of (b) 0.5 – 1.5 eq. of C₆₀ and (c) 0.5 – 1.5 eq. of C₇₀, $\lambda_{ex} = 405$ nm in PhCN.

References:

- 1. N. Duvva, K. Sudhakar, D. Badgurjar, R. Chitta and L. Giribabu, , J. Photochem. and Photobiol. A: Chem. 2015, 312, 8-19.
- 2. A. W. Franz, Z. Zhou, R. Turdean, A. Wagener, B. Sarkar, M. Hartmann, S. Ernst, W. R. Thiel and T. J. Müller, Eur. J. Org. Chem., 2009, 2009, 3895-3905.
- 3.
- 4. 5.
- 6.
- 7.
- 8.
- 3905.
 F. A. Walker, J. Magn. Reson., 1974, 15, 201-218.
 C. Lee, W. Yang and R. G. Parr, *Phy. Rev. B.*, 1988, 37, 785.
 W. Kohn, A. D. Becke and R. G. Parr, *The J. Phy. Chem.*, 1996, 100, 12974-12980.
 M. E. Zandler and F. D'Souza, *C R Chim*, 2006, 9, 960-981.
 S. GRIMME and J. ANTONY, *The J. Chem. Phys.*, 2010, 132.
 S. Grimme, S. Ehrlich and L. Goerigk, *J. Comput. Chem.*, 2011, 32, 1456-1465.
 M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, G. Petersson and H. Nakatsuji, *Inc., Wallingford CT*, 2016. 9. **2016**.