Supplementary Information (SI) for:

### Coupling NiFe-MOF nanosheets on Ni<sub>3</sub>N microsheet arrays for efficient electrocatalytic water oxidation

Boran Wang,†<sup>a</sup> Duo Chen,†<sup>c</sup> Shihui Jiao, <sup>a</sup> Qi Zhang, <sup>a</sup> Wenwen Wang, <sup>a</sup> Mengjie Lu, <sup>c</sup>

Zhenxing Fang, <sup>b</sup> Guangsheng Pang\*<sup>a</sup> and Shouhua Feng<sup>a</sup>

#### **Experimental section**

#### Preparation of NiFe-MOF@Ni<sub>3</sub>N/NF

In a typical procedure for the preparation of Ni(OH)<sub>2</sub>/NF, 4 mmol Ni(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O (98%, Sinopharm Chemical Reagent Co.,Ltd), 20 mmol of CO(NH<sub>2</sub>)<sub>2</sub> (99.5%, Aladdin), and 12 mmol NH<sub>4</sub>F (99.99%, Aladdin) were dissolved in 50 mL deionized water under stirring. The reaction solution and blank Ni foam  $(1 \times 5 \text{ cm}^2)$  were transferred to a 100 mL autoclave and maintained at 120 °C for 6 h. After being cooled down to room temperature, the product on Ni foam (Ni(OH)<sub>2</sub>/NF) was washed with deionized water and ethanol, and dried in a vacuum overnight. Ni<sub>3</sub>N/NF was obtained by annealing Ni(OH)<sub>2</sub>/NF at 380 °C for 2 h with a heating rate of 2 °C min<sup>-1</sup> under an NH<sub>3</sub> atmosphere. The loading amount of Ni<sub>3</sub>N on the Ni foam was 2.8 mg cm<sup>-2</sup>.

To prepare NiFe-MOF@Ni<sub>3</sub>N/NF, the prepared Ni<sub>3</sub>N/NF was immersed into a homogenous solution of 1 mmol FeCl<sub>2</sub>·4H<sub>2</sub>O (99%, Sinopharm Chemical Reagent Co.,Ltd), 1 mmol 1,4-H<sub>2</sub>BDC (TPA, 99%, Sinopharm Chemical Reagent Co.,Ltd), 28 mL DMF, 2 mL ethanol and 2 mL deionized water. The mixture was transferred to a 50 mL autoclave and maintained at 125 °C for 10 h. After being cooled down to room temperature, the product on Ni foam (NiFe-MOF@Ni<sub>3</sub>N/NF) was washed with deionized water and ethanol, and dried in a vacuum overnight. The loading amount of NiFe-MOF@Ni<sub>3</sub>N on the Ni foam was 4.5 mg cm<sup>-2</sup>.

Similarly, NiFe-MOF/NF was prepared by replacing Ni<sub>3</sub>N/NF with blank Ni foam. The loading amount of NiFe-MOF on the Ni foam was 2.3 mg cm<sup>-2</sup>.

#### Preparation of IrO<sub>2</sub>/NF

20 mg  $IrO_2$  was dispersed in 950 µL isopropanol and 50 µL Nafion to form a homogeneous ink by sonication for 40 minutes. Then, the prepared ink was dropped onto Ni foam with a mass loading of 4.5 mg cm<sup>-2</sup> to serve as a working electrode.

#### **Structural Characterization**

X-ray diffraction (XRD) measurement was carried out on a Rigaku D/Max 2550 Xray diffractometer with Cu K $\alpha$  radiation ( $\lambda = 1.5418$  Å). The scanning electron microscope (SEM) image and energy dispersive spectrometer (EDS) was obtained with a JEOL JSM 6700F electron microscope. The transmission electron microscope (TEM) image was obtained with a Tecnai G2 F30 S-Twin microscope equipped with a field emission gun operating at 200 kV. The X-ray photoelectron spectroscopy (XPS) was performed on an ESCALAB 250 X-ray photoelectron spectrometer with a monochromatic X-ray source (Al K $\alpha$  h $\nu$  = 1486.6 eV). The contact angle was measured by Kruss DSA 100 system.

#### **Electrochemical measurements**

Electrochemical measurements were performed on a CHI 660e electrochemical station with a three-electrode system. The obtained products were directly used as the

working electrodes (1 × 0.3 cm<sup>2</sup>). A graphite rod and Hg/HgO electrode were used as the counter electrode and reference electrode, respectively. 1 M KOH aqueous solution was used as the electrolyte. The polarization curves were characterized by linear sweep voltammetry at a scan rate of 2 mV s<sup>-1</sup>. And all curves were corrected with iR-compensation. The electrochemical impedance spectroscopy (EIS) was collected at 1.48 V (vs. RHE). The frequency range was 100 kHz to 0.01 Hz and the amplitude of the applied voltage was 5 mV. The cyclic voltammetry (CV) measurement was carried out to assess the electrochemical double-layer capacitance (C<sub>dl</sub>). The scan rates were in the range of 30-80 mV s<sup>-1</sup>. All potentials measured were calibrated to the reversible hydrogen electrode (RHE) by the formula:  $E_{vs. RHE} = E_{vs.}$ Hg/HgO + 0.098 + 0.059 pH.

#### **TOF** calculations

According to the references (Nat. Commun., 2018, **9**, 5309; Nano Energy, 2018, **53**, 492-500), we have carried out the TOF calculation using the following formula (1)

$$TOF_{persite} = \frac{\# Total \, Oxygen \, Turn \, Overs/cm^2 geometric \, area}{\# \, Surface \, Sites \, /cm^2 \, geometric \, area}$$

(1)

The number of total oxygen turn overs was calculated from the current density by the following equation (2):

$$= \left(j\frac{mA}{cm^2}\right) \left(\frac{1C\ s^{-1}}{1000\ mA}\right) \left(\frac{1\ mol\ e^{-}}{96485.3\ C}\right) \left(\frac{1\ mol\ O_2}{4\ mol\ e^{-}}\right) \left(\frac{6.022\ \times\ 10^{23}\ O_2\ mol\ cules}{1\ mol\ O_2}\right) = \\ \times\ 10^{15} \frac{O_2/s}{cm^2}\ per\ \frac{mA}{cm^2}$$

$$(2)$$

The total number of effective surface sites was calculated based on the following equation (3):

$$\frac{\# Surface sites}{cm^2 geometric area} = \frac{\# Surface sites (flat standard)}{cm^2 geometric area} \times Roughness factor$$
(3)

In the equation (3), the roughness factor ( $R_f$ ) can be determined by the double-layer capacitance ( $C_{dl}$ ) from Fig. 3d of the main text. The specific capacitance can be converted into an electrochemical active surface area using the specific capacitance value for a flat standard with 1 cm<sup>2</sup> of surface area. According to the reference (Energy Environ. Sci., 2015, **8**, 3022-3029), we assumed 60  $\mu$ F cm<sup>-2</sup> for a flat electrode and the surface sites of 2 × 10<sup>15</sup> for the flat standard electrode. Thus, the

$$C_{dl} \times 10^{3}$$

number of surface active sites for catalyst was estimated to be:  $60 \times 2 \times 10^{15}$ 

$$C_{dl}$$

surface sites/cm<sup>2</sup> =  $\overline{30} \times 10^{18}$  surface sites/cm<sup>2</sup>.

Therefore, the TOF<sub>OER</sub> per site for the catalyst at different overpotentials ( $\eta$ ) was calculated as follows:

$$TOF_{OER} = \frac{1.56 \times 10^{15}}{\frac{C_{dl}}{30} \times 10^{18}} \times j$$

(4)

*j* corresponds to the current density at different overpotentials.



Fig. S1 (a, b) SEM images of blank Ni foam.



Fig. S2 (a, b) SEM images of Ni(OH)<sub>2</sub>/NF.



Fig. S3 EDS spectrum of NiFe-MOF@Ni<sub>3</sub>N/NF based on the element mapping.



Fig. S4 (a, b) SEM images of NiFe-MOF/NF.



**Fig. S5** Cross-section SEM images of (a) NiFe-MOF@Ni<sub>3</sub>N/NF and (b) NiFe-MOF /NF.



Fig. S6 Penetration process of water droplet on the NiFe-MOF@Ni $_3$ N/NF.



Fig. S7 XPS survey spectrum for NiFe-MOF@Ni<sub>3</sub>N/NF.



Fig. S8 XPS spectra of Fe 2p for NiFe-MOF/NF and NiFe-MOF@Ni<sub>3</sub>N/NF.



Fig. S9 XPS spectra of N 1s for (a)  $Ni_3N/NF$  and (b)  $NiFe-MOF@Ni_3N/NF$ .





Fig. S11 CV curves of (a) Ni<sub>3</sub>N/NF; (b) NiFe-MOF/NF and (c) NiFe-MOF@Ni<sub>3</sub>N/NF.



Fig. S12 Polarization curves for NiFe-MOF@Ni<sub>3</sub>N/NF obtained before and after 2000 CV cycles.



Fig. S13 Stability test of NiFe-MOF/NF at the current density of 200 mA cm<sup>-2</sup>.



Fig.S14 (a, b) SEM images of NiFe-MOF@Ni<sub>3</sub>N/NF after stability test.



Fig. S15 High-resolution XPS spectra of (a) Ni 2p; (b) Fe 2p and (c) O 1s for NiFe-MOF@Ni<sub>3</sub>N/NF after stability test.

| Reference                                             | Electrocatalyst                                       | <i>j</i> (mA cm <sup>-2</sup> ) | η (mV) |  |  |  |
|-------------------------------------------------------|-------------------------------------------------------|---------------------------------|--------|--|--|--|
|                                                       |                                                       | 50                              | 252    |  |  |  |
| 1 his work                                            | N1Fe-MOF@N1 <sub>3</sub> N/NF                         | 200                             | 281    |  |  |  |
| ACS Appl. Mater. Interfaces, 2019, 11,                | Ni-BDC@NiS                                            | 20                              | 330    |  |  |  |
| 41595-41601.                                          |                                                       |                                 |        |  |  |  |
| ChamSugCham 2020 13 5647                              | Mr. E. N. MOE 74                                      | 10                              | 245    |  |  |  |
| ChemsusChem, 2020, 13, 5647. $Mn_{0.52}Fe_{0.71}NI-N$ | WIN <sub>0.52</sub> F e <sub>0.71</sub> NI-IVIOF - 74 | 100                             | 462    |  |  |  |
| J. Mater. Chem. A, 2020, 8, 14574-14582.              | Ni <sub>3</sub> S <sub>2</sub> /MIL-53(Fe)            | 100                             | 251    |  |  |  |
| J. Mater. Chem. A, 2020, 8, 16908-16912.              | NiFe-MOF/NiSe <sub>x</sub> /NF                        | 100                             | 230    |  |  |  |
| J. Power Sources, 2020. 451, 227295.                  | Ni <sub>3</sub> S <sub>2</sub> @MIL-53(NiFeCo)        | 50                              | 236    |  |  |  |
| N 1 2010 11 14785 14702                               | NI: C/MIL 52/E-)                                      | 10                              | 256    |  |  |  |
| Nanoscale, 2019, <b>11</b> , 14785-14792.             | NI-5/WIIL-55(FC)                                      | 100                             | 298    |  |  |  |
| Nanoscale, 2020, <b>12</b> , 67-71.                   | MIL-53(Co-Fe)                                         | 100                             | 262    |  |  |  |
| Adv. Funct. Mater., 2018, 28, 1801554.                | Ni-MOF@Fe-MOF                                         | 10                              | 265    |  |  |  |
| Nat. Commun., 2017, 8, 15341.                         | NiFe-MOF                                              | 10                              | 240    |  |  |  |

## **Table S1** OER performance of some recently reported MOFs based OER electrocatalysts and NiFe-MOF@Ni<sub>3</sub>N/NF in this work.

# Table S2 TOF values for different samples at the overpotential of 250 and 300 mV, respectively.

|                                | Electrocatalyst               | $\eta$ = 250 mV | $\eta = 300 \text{ mV}$ |
|--------------------------------|-------------------------------|-----------------|-------------------------|
| TOF (s <sup>-1</sup> ) for OER | Ni <sub>3</sub> N/NF          | 0.0121          | 0.0285                  |
|                                | NiFe-MOF/NF                   | 0.0487          | 0.391                   |
|                                | NiFe-MOF@Ni <sub>3</sub> N/NF | 0.144           | 1.04                    |

| Reference                                              | Electrocatalyst                        | TOF (s <sup>-1</sup> ) for OER     |
|--------------------------------------------------------|----------------------------------------|------------------------------------|
| This work                                              | NiFe-MOF@Ni <sub>3</sub> N/NF          | 0.144 at 250 mV;<br>1.04 at 300 mV |
| Nat. Commun., 2018, 9, 2014.                           | NiFe/Ni-P                              | 0.13 at 250 mV                     |
| Adv. Mater., 2018, 30, 1705516.                        | Co-Ni <sub>3</sub> N                   | 0.0134 at 350 mV                   |
| Nat. Commun., 2018, 9, 1809.                           | IFONFs-45                              | 0.2141 at 370 mV                   |
| Nano Energy, 2019, <b>63</b> , 103880.                 | NiFe-LDH/MXene/NF                      | 0.82 at 300 mV                     |
| Small, 2020, 16, 1906564.                              | D-Ni-MOF NSAs                          | 0.440 at 300 mV                    |
| <i>Adv. Funct. Mater.</i> , 2020, <b>31</b> , 2006484. | Ni <sub>2</sub> P-Fe <sub>2</sub> P/NF | 0.925 at 300 mV                    |
| Appl. Catal. B-Environ., 2020, 270,<br>118889.         | Ni <sub>2</sub> Co-N                   | 0.012 at 270 mV                    |
| Adv. Mater., 2020, 32, 1905679.                        | W <sub>2</sub> N/WC                    | 0.15 at 370 mV                     |

| Table S3 Comparison of the TOF values of our e | electrocatalyst with recently reported |
|------------------------------------------------|----------------------------------------|
| ones.                                          |                                        |