Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

Determination of sulfite in food and beverages using a reliable ratiometric AIE probe

Shasha Zhang^a, Ju Mei^{a,*}

^aKey Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P.R. China.

* E-mail: daisymeiju@ecust.edu.cn

Table of Contents

Scheme S1. Synthetic route to the probe	S-1
Fig. S1. The ¹ H NMR spectrum of compound 1 in DMSO- d_6	S-1
Fig. S2. The ¹ H NMR spectrum of the probe in DMSO- d_6	S-2
Fig. S3. The ¹³ C NMR spectrum of the probe in CDCl ₃	S-2
Fig. S4. The HRMS of the probe	S-3
Fig. S5. The DLS results of probe in the mixture of DMSO and water with different water fraction	s (<i>f</i> _w s)S-4
Fig. S6. The UV-vis spectra of the probe in the DMSO/water mixtures with different f_{ws}	S-5
Fig. S7. Time-dependent PL spectra of the probe solution containing different concentrations of su	lfiteS-5
Fig. S8. (a) The UV-vis spectra and (b) the normalized UV-vis spectra of the probe and SO_3^{2-} in	the DMSO/ H_2O
(7/3, v/v) solution with different concentrations of SO_3^{2-} . [probe] = 10 μ M	.S-6
Fig. S9. (a) The histograms of the probe in the presence of different anions or sulfite. (b) The his in the presence of different anions with sulfite	tograms of probe
Fig. S10. High resolution mass spectrum of the product of the reaction between probe and SO_3^{2-}	S-7
Fig. S11. (a) Fluorescence spectra of the probe in the sugar samples with different concentration	ns of sulfite. The
photographs of probe for the determination of the sulfite anion in sugar samples taken u	ınder (b) daylight
and (c) handheld UV lamp	S-7
Table S1. Results for the determination of the sulfite anion in sugar samples for four times	S-
8	
Fig. S12. The fluorescence spectra of probe in the liquor samples with different concentr	ations of spiked
SO ₃ ^{2–}	S-8
Table S2. Results for the determination of the sulfite anion in the liquor samples for four times9	S-
Fig. S13. The fluorescence spectra of probe in the peach brandy samples with different concent	rations of spiked
SO ₃ ^{2–}	S-9
Table S3. Results for the determination of sulfite anion in the peach brandy samples for four times	S-10
Table S4. Results for the determination of sulfite anion in the red wine samples for four times	S-10
Fig. S14. The fluorescence spectra of probe in the beer samples with different concentration	ations of spiked
SO ₃ ^{2–}	S-11
Table S5. Results for the determination of sulfite anion in the beer samples for four times	S-11

Scheme S1. Synthetic route to the probe.

Fig. S1. The ¹H NMR spectrum of compound 1 in DMSO- d_6 , where the solvent peaks are marked with asterisks.

Fig. S2. The ¹H NMR spectrum of the probe in DMSO- d_6 , where the solvent peaks are marked with asterisks.

Fig. S3. The ¹³C NMR spectrum of the probe in CDCl₃, where the solvent peaks are marked with asterisks.

Fig. S5. The DLS results of probe in the mixture of DMSO and water with different water fractions (f_w s).

Fig. S6. The UV-vis spectra of the probe in the DMSO/water mixtures with different water fractions (f_w s) at room temperature, $c = 10 \mu$ M.

Fig. S7. Time-dependence of the fluorescence spectra of the probe solution (10 μ M, in DMSO/H₂O = 7/3 (v/v)) containing different concentrations of sulfite anions. ($\lambda_{ex} = 435$ nm).

Fig. S8. (a) The UV-vis spectra and (b) the normalized UV-vis spectra of the probe and $SO_3^{2^-}$ in the DMSO/H₂O (7/3, v/v) solutions with different concentrations of $SO_3^{2^-}$. [probe] = 10 μ M.

Fig. S9. (a) The histograms of the probe in the presence of different anions or sulfite in the DMSO/H₂O (7/3, v/v) mixtures (other species including 1: blank, 2: SO_3^{2-} , 3: F⁻, 4: Cl⁻, 5: Br⁻, 6: I⁻, 7: AcO⁻, 8: ClO⁻, 9: HS⁻, 10: HCO₃⁻, 11: H₂PO₄⁻, 12: HSO₃⁻, 13: SO₄²⁻, 14: CO₃²⁻, 15: HPO₄²⁻, 16: PO₄³⁻). (b) The histograms of probe in the presence of different anions with sulfite (other species including 1: blank, 2: F⁻, 3: Cl⁻, 4: Br⁻, 5: I⁻, 6: AcO⁻, 7: ClO⁻, 8: HS⁻, 9: HCO₃⁻, 10: H₂PO₄⁻, 11: HSO₃⁻, 12: SO₄²⁻, 13: CO₃²⁻, 14: HPO₄²⁻, 15: PO₄³⁻).

Fig. S10. High resolution mass spectrum of the product of the reaction between probe and SO_3^{2-} .

Fig. S11. (a) Fluorescence spectra of the probe (10 μ M, in DMSO/H₂O = 7/3 (v/v), pH 7.4 0.01 mol/L PBS buffered) in the sugar samples with different concentrations of sulfite upon 37 °C incubation. The photographs of probe in the DMSO/H₂O (7/3, v/v) mixture for the determination of the sulfite anion in sugar samples taken under (b) daylight and (c) handheld UV lamp. (1: probe, 2: sugar, 3: probe + sugar, 4: probe + sugar + 160 μ M SO₃²⁻, 5: probe + sugar + 180 μ M SO₃²⁻, 6: probe + sugar + 200 μ M SO₃²⁻). [probe] = 10 μ M.

Time	Added SO ₃ ^{2–}	Found SO ₃ ^{2–}	Determined SO ₃ ²⁻
	(µmol/L)	(µmol/L)	(µmol/L)
lst	160	174.930	
	180	195.708	15.513
	200	215.902	
2nd	160	175.665	
	180	195.089	15.721
	200	216.408	
	160	174.020	
3rd	180	195.045	14.672
	200	214.950	
4th	160	175.462	
	180	194.615	15.094
	200	215.206	

Table S1. Results for the determination of the sulfite anions in sugar samples for four times

Fig. S12. The fluorescence spectra of probe in the liquor samples with different concentrations of spiked SO_3^{2-} (1: probe, 2: probe + liquor, 3: probe + liquor + 160 μ M SO_3^{2-} , 4: probe + liquor + 180 μ M SO_3^{2-} , 5: probe + liquor + 200 μ M SO_3^{2-}). [probe] = 10 μ M.

Time	Added SO ₃ ^{2–}	Found SO ₃ ^{2–}	Determined SO ₃ ²⁻
	(µmol/L)	(µmol/L)	(µmol/L)
lst	160	260.541	
	180	279.062	99.769
	200	299.705	
	160	259.413	
2nd	180	278.988	99.482
	200	300.044	
	160	261.025	
3rd	180	280.423	100.446
	200	299.891	
4th	160	259.870	
	180	280.123	99.990
	200	299.976	

Table S2. Results for the determination of sulfite anions in the liquor samples for four times

Fig. S13. The fluorescence spectra of probe in the peach brandy samples with different concentrations of spiked SO_3^{2-} (1: probe, 2: probe + peach brandy, 3: probe + peach brandy + 160 μ M SO_3^{2-} , 4: probe + peach brandy + 180 μ M SO_3^{2-} , 5: probe + peach brandy + 200 μ M SO_3^{2-}). [probe] = 10 μ M.

Time	Added SO ₃ ²⁻	Found SO ₃ ^{2–}	Determined SO ₃ ^{2–}
	(µmol/L)	(µmol/L)	(µmol/L)
lst	160	186.751	
	180	206.453	26.573
	200	226.514	
	160	185.982	
2nd	180	206.155	26.255
	200	226.627	
3rd	160	186.162	
	180	206.253	26.287
	200	226.445	
4th	160	185.972	
	180	206.694	26.288
	200	226.197	

Table S3. Results for the determination of sulfite anions in the peach brandy samples for four times

Table S4. Results for the determination of the sulfite anions in red wine samples for four times

Time	Added SO ₃ ^{2–}	Found SO ₃ ^{2–}	Determined SO ₃ ^{2–}
	(µmol/L)	(µmol/L)	$(\mu mol/L)$
1st	20	175.230	
	30	185.708	155.613
	40	195.902	
2nd	20	174.171	
	30	185.031	156.070
	40	196.008	
3rd	20	174.020	
	30	185.045	154.672
	40	194.950	
4th	20	175.446	
	30	185.650	155.434
	40	195.206	

Fig. S14. The fluorescence spectra of probe in the beer samples with different concentrations of spiked SO_3^{2-} (1: probe, 2: probe + beer, 3: probe + beer + 20 μ M SO_3^{2-} , 4: probe + beer + 30 μ M SO_3^{2-} , 5: probe + beer + 40 μ M SO_3^{2-}). [probe] = 10 μ M.

Time	Added SO ₃ ^{2–}	Found SO ₃ ^{2–}	Determined SO ₃ ^{2–}
Time	(µmol/L)	(µmol/L)	(µmol/L)
1st	20	174.320	
	30	184.332	155.826
	40	195.825	
	20	175.012	
2nd	30	185.018	155.142
	40	195.395	
	20	175.273	
3rd	30	185.018	155.044
	40	194.840	
4th	20	176.446	
	30	185.668	156.184
	40	196.438	

Table S5. Results for the determination of sulfite anions in the beer samples for four times