Electronic Supplementary Information

Conformational isomerism involving carboxylate groups of a linker in metal organic frameworks and its distinctive influence on the detection of ketones[†]

Sandeep Kumar^{\$}, Himanshi Bhambri^{\$} and Sanjay K. Mandal*

Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India

^{\$}Equal contribution *Corresponding Author's E-mail: sanjaymandal@iisermohali.ac.in

Table of Contents

Items		
Calculation for the squeezed solvent molecules in SCXRD		
Fig. S1 N ₂ gas adsorption-desorption isotherms of 1 and 2 at 77 K.		
Fig. S2 Simulated and experimental PXRD patterns for 1 and 2.		
Fig. S3 Solid state reflectance of H ₂ bpaipa and compound 1 and 2.		
Fig. S4 Luminescence spectra of 1 and 2.	S4	
Fig. S5 Sensing of different solvents by 1 and 2.	S5	
Fig. S6-S8 Sensing of acetone in MeOH, EtOH and CH ₃ CN by 1.		
Fig. S9-S11 Sensing of acetone in MeOH, EtOH and CH ₃ CN by 2.	S9-S11	
Detection limit calculation of acetone in MeOH, EtOH and CH ₃ CN for 1 and	S12-S15	
2 (Fig. S12-S17 and Table S1)		
Comparison of detection limit of 1 and 2 with those reported in the literature	S16	
(Table S2)		
Fig. S18-S24 Emission spectra of 1 (dispersed in methanol) upon incremental	S17-S20	
addition of derivatives of ketones.		
Fig. S25-S31 Emission spectra of 2 (dispersed in methanol) upon incremental		
addition of derivatives of ketones.		
Fig. S32-S35 Detection limit calculation of acetylacetone and determination of Stern-		
Volmer constant for 1 and 2.		
Fig. S36 FESEM images of 1 before and after dipping in different ketones.		
Fig. S37 FESEM images of 2 before and after dipping in different ketones.		
Fig. S38 Spectral overlap plot between emission spectra of H ₂ bpaipa and		
absorption spectra of various ketones.		
Fig. S39 Spectral overlap plot between absorption spectra of H ₂ bpaipa, 1, 2		
and acetylacetone.		

Calculation of determining solvent molecules squeezed out:

Number of electrons squeezed out = 183.4Z = 4 Number of electrons squeezed out per unit formula = 183.4/4 = 45.85Number of electrons in 5 H₂O molecules = 50 Number of electrons squeezed out = 45.85

Support from TGA analysis

% weight loss due to 5 H₂O molecules = $(90/516.8) \times 100\% = 17.4\%$; this is in good agreement with the experimental value (16%)

Fig. S1 N_2 gas adsorption-desorption isotherms of 1 and 2 at 77 K.

Fig. S2 Simulated and experimental PXRD patterns for 1 and 2.

Fig. S3 Solid state diffuse reflectance spectra of H₂bpaipa, 1 and 2.

Fig. S4 Luminescence spectra of 1 and 2 in methanol (excitation wavelength: 310 nm).

Fig. S5 Sensing of different solvents by (a) 1 and (b) 2.

Fig. S6 Sensing of acetone in MeOH by 1: change of intensity based on incremental addition of acetone (a) intensity vs volume (inset: spectral changes) and (b) intensity vs content in v/v%.

(a)

Fig. S7 Sensing of acetone in EtOH by 1: change of intensity based on incremental addition of acetone (a) intensity vs volume (inset: spectral changes) and (b) intensity vs content in v/v%.

Fig. S8 Sensing of acetone in CH₃CN by 1: change of intensity based on incremental addition of acetone (a) intensity vs volume (inset: spectral changes) and (b) intensity vs content in v/v%.

(a)

Fig. S9 Sensing of acetone in MeOH by 2: change of intensity based on incremental addition of acetone (a) intensity vs volume (inset: spectral changes) and (b) intensity vs content in v/v%.

(a)

Fig. S10 Sensing of acetone in EtOH by 2: change of intensity based on incremental addition of acetone (a) intensity vs volume (inset: spectral changes) and (b) intensity vs content in v/v%.

Fig. S11 Sensing of acetone in CH₃CN by 2: change of intensity based on incremental addition of acetone (a) intensity vs volume (inset: spectral changes) and (b) intensity vs content in v/v%.

Determination of detection limit and quantification limit for acetone in 1 and 2 in MeOH, EtOH and CH₃CN:

Fig. S12 Determination of detection limit through fitting of the linear region of fluorescence intensity of 1 in MeOH upon incremental addition of acetone to it at $\lambda_{em} = 447$ nm (upon $\lambda_{ex} = 310$ nm) (R² = 0.968).

Fig. S13 Determination of detection limit through fitting of the linear region of fluorescence intensity of 1 in EtOH upon incremental addition of acetone to it at $\lambda_{em} = 447$ nm (upon $\lambda_{ex} = 310$ nm) (R² = 0.99).

Fig. S14 Determination of detection limit through fitting of the linear region of fluorescence intensity of 1 in CH₃CN upon incremental addition of acetone to it at $\lambda_{em} = 447$ nm (upon $\lambda_{ex} = 310$ nm) (R² = 0.988).

Fig. S15 Determination of detection limit through fitting of the linear region of fluorescence intensity of 2 in MeOH upon incremental addition of acetone to it at $\lambda_{em} = 447$ nm (upon $\lambda_{ex} = 310$ nm) (R² = 0.998).

Fig. S16 Determination of detection limit through fitting of the linear region of fluorescence intensity of 2 in EtOH upon incremental addition of acetone to it at $\lambda_{em} = 447$ nm (upon $\lambda_{ex} = 310$ nm) (R² = 0.99).

Fig. S17 Determination of detection limit through fitting of the linear region of fluorescence intensity of 2 in CH₃CN upon incremental addition of acetone to it at $\lambda_{em} = 447$ nm (upon $\lambda_{ex} = 310$ nm) (R² = 0.991).

S. No.	Blank readings (1)	Fluorescence intensity (x 10 ⁷)
1.	Reading#1	2.81588
2.	Reading#2	2.67100
3.	Reading#3	2.54067
4.	Reading#4	2.78164
5.	Reading#5	2.72620
6.	Standard Deviation (σ)	1064425

 Table S1. Calculation of detection limits for 1 and 2.

S. No.	Blank readings (2)	Fluorescence intensity (x 10 ⁷)
1.	Reading#1	2.21565
2.	Reading#2	2.39779
3.	Reading#3	2.36071
4.	Reading#4	2.77988
5.	Reading#5	2.27562
6.	Standard Deviation (σ)	2208715

Detection limit was calculated using the following equation:

Detection limit (LoD) = $3\sigma/m$

Where ' σ ' is the calculated standard deviation from five blank measurements and 'm' is the slope obtained from the plot of fluorescence emission with increasing concentration of acetone.

Compound	Solvent medium	LOD (v/v%)
1	CH₃CN	0.26
1	MeOH	1.2
1	EtOH	0.63
2	CH₃CN	0.53
2	MeOH	3.23
2	EtOH	1.34

Entry	MOFs	Analyte	Solvent medium	LOD (vol%)	Ref. ^{\$}
1.	$\label{eq:constraint} \begin{split} & [\text{Zn}_5(\text{L})_4(\text{H}_2\text{tpim})_2(\text{FA})_4(\text{H}_2\text{O})_2]_n,\\ & [\text{Zn}(\text{L})(\text{H}_2\text{tpim})]_n \end{split}$	Acetone	DMF	10 25	7
2.	Cd(5-aip)L·3DMA; L = 3,5-di(pyridine-4-yl)-4H-1,2,4-triazol- 4-amine	Acetone	DMA	1.812*	10
3.	[Cu(tpp)·H ₂ O] _{2n}	Acetone	H ₂ O	0.0842	11a
4.	[Zn(L)(bpdc)]·1.6H ₂ O, [Cu ₂ (L)(Hbptc) ₂]; L = 1,4-di(1 <i>H</i> -imidazol-4-yl)benzene	Acetone	DMF	0.0478 0.0465	11b
5.	[Cd(Tipb)(pta) _{0.5} (H ₂ O)(NO ₃)]·(DMF) _x (H ₂ O) _y [Cd(Tipb)(mta)]·(DMF) _x (H ₂ O) _y	Acetone	CH₃CN	0.084 0.075	11c
6.	[Zn ₂ (TPC4A)(DMF)(H ₂ O) ₄]·3H ₂ O	Acetone	EtOH	5	11f
7.	[Zn ₂ (2,5-PDC)(H ₂ O) ₂]·H ₂ O/Tb ³⁺	Acetone	H ₂ O	55#	11g
8.	[Cd ₃ (L') ₂ (BTB) ₂ (H ₂ O)]·DMF·H ₂ O; L' = 1,3-di(1 <i>H</i> -imidazol-4-yl)benzene	Acetone	CH₃CN	0.122	11e
9.	[Eu(BTC)]	Acetone	1-propanol	N.R.	9
10.	[Eu ₂ (μ ₂ -pzdc)(μ ₄ -pzdc)(μ ₂ - ox)(H ₂ O) ₄]·8H ₂ O	Acetone	MeOH	N.R.	11d
11.	[Eu(BTB(H ₂ O) ₂ ·(solvent)] _n , [Eu(BTB)]	Acetone	EtOH	0.3 0.01	11h
12.	{[Zn(bpaipa)]·DMF·2H ₂ O} _n (1) {[Zn(bpaipa)]·5H ₂ O} _n (2)	Acetone	MeOH EtOH CH₃CN MeOH EtOH	1.2 0.63 0.26 3.23 1.34	This work
			CH₃CN	0.53	

Table S2. Comparison of detection limits for 1 and 2 with those reported in the literature.

LOD units for these sensors are in *mM and * ppm. ^{\$}These reference numbers are as cited in the main text. N.R.= not reported.

Fig. S18 Emission spectra of 1 (dispersed in methanol) upon incremental addition of 20 mM acetone solution.

Fig. S19 Emission spectra of **1** (dispersed in methanol) upon incremental addition of 20 mM acetophenone solution.

Fig. S20 Emission spectra of **1** (dispersed in methanol) upon incremental addition of 20 mM acetylacetone solution.

Fig. S21 Emission spectra of 1 (dispersed in methanol) upon incremental addition of 20 mM mesityl oxide solution.

Fig. S22 Emission spectra of 1 (dispersed in methanol) upon incremental addition of 20 mM cyclohexanone solution.

Fig. S23 Emission spectra of **1** (dispersed in methanol) upon incremental addition of 20 mM cyclopentanone solution.

Fig. S24 Emission spectra of **1** (dispersed in methanol) upon incremental addition of 20 mM 3-pentanone.

Fig. S25 Emission spectra of **2** (dispersed in methanol) upon incremental addition of 20 mM acetone solution.

Fig. S26 Emission spectra of **2** (dispersed in methanol) upon incremental addition of 20 mM acetophenone solution.

Fig. S27 Emission spectra of **2** (dispersed in methanol) upon incremental addition of 20 mM acetylacetone solution.

Fig. S28 Emission spectra of **2** (dispersed in methanol) upon incremental addition of 20 mM mesityl oxide solution.

Fig. S29 Emission spectra of **2** (dispersed in methanol) upon incremental addition of 20 mM cyclohexanone solution.

Fig. S30 Emission spectra of **2** (dispersed in methanol) upon incremental addition of 20 mM cyclopentanone solution.

Fig. S31 Emission spectra of **2** (dispersed in methanol) upon incremental addition of 20 mM 3-pentanone solution.

Detection Limit Calculation and Determination of Stern-Volmer Constant

Fig. S32 Determination of detection limit through fitting of the linear region of fluorescence intensity of 1 upon incremental addition of acetylacetone to it at $\lambda_{em} = 447$ nm (upon $\lambda_{ex} = 310$ nm) (R² = 0.987).

Fig. S33 Determination of detection limit through fitting of the linear region of fluorescence intensity of 2 upon incremental addition of acetylacetone to it at $\lambda_{em} = 447$ nm (upon $\lambda_{ex} = 310$ nm) ($R^2 = 0.988$).

Determination of detection limit and quantification limit for acetylacetone in 1 and 2:

Detection limit was calculated using the following equation:

Detection limit (LoD) = $3\sigma/m$

Quantification limit (LoQ) = $10\sigma/m$

Where ' σ ' is the calculated standard deviation from five blank measurements and 'm' is the slope obtained from the plot of fluorescence emission with increasing concentration of acetylacetone.

Compound	LOD	LOQ
1	54.7 ppm (546.7 μM), 2.38 v/v%	182.4 ppm 7.93 v/v%
2	59.5 ppm (594.5 μM), 4.94 v/v%	198.4 ppm 16.47 v/v%

Determination of Stern-Volmer constant for acetylacetone in 1 and 2:

The Stern-Volmer equation:

 $I_0/I = 1 + K_{SV}[A],$

Where K_{SV} is the quenching constant (M^{-1}) ,[A] is molar concentration of the acetylacetone analyte and I_0 and I are the emission intensities of 1 or 2, before and after addition of acetylacetone analyte, respectively.

Fig. S34 Stern-Volmer (SV) plot for acetylacetone in **1**. The relative fluorescence intensity is linear with acetylacetone concentration in the range of $1-5 \ge 10^{-4}$ M, $I_0/I = 1 + 204.63056$ [Acetylacetone] ($R^2 = 0.983$).

Fig. S35 Stern-Volmer (SV) plot for acetylacetone in **2**. The relative fluorescence intensity is linear with acetylacetone concentration in the range of $1-5 \ge 10^{-4}$ M, $I_0/I = 1 + 469.44184$ [Acetylacetone] ($R^2 = 0.998$).

Fig. S36 FESEM images of **1**: before (a) and (b,c) after dipping in different ketones (acetophenone and cyclohexanone, respectively).

Fig. S37 FESEM images of **2**: before (a) and (b,c) after dipping in different ketones (acetophenone and cyclohexanone, respectively).

Fig. S38 Spectral overlap of absorption spectra of different ketone analytes and emission spectra of the ligand H_2 bpaipa.

Fig. S39 Spectral overlap of absorption spectra of H_2 bpaipa, 1, 2 and acetylacetone.