Supporting information

Molten salt strategy and plasma technology induced MnO₂ with oxygen vacancy for high performance Zn-ions battery

Fuqiang Shao¹, Shuke Li¹, Yanchao Xu¹, Yang Jiao^{1*}, Jianrong Chen^{1*}

*Corresponding author: E-mail: <u>yangjiao@zjnu.edu.cn</u> and <u>cjr@zjnu.cn</u>, Phone: (+86)-0579-82291275

1 College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China

Calculation

According to the reported literature^{1, 2}, the current (*i*) and scan rate (v) in CV curves have relationships with equation:

$$i = av^{b}$$
(1)
$$lg(i) = blg(v) + lg(a)$$
(2)

where *i* is peak current, *a* correspond to constant, *v* is the scan rate and *b* is equaled to the slope of the lg(v)-lg(i) plots. If *b* approximately equals to 0.5, suggests the diffusion process is dominant, while a capacitive behavior will dominate when b is about 1³.

The contribution ratios of the two processes at scan rates from 0.1 to 0.5 mV s⁻¹ can be calculated by equations (3):

$$i(v) = k_1 v + k_2 v^{1/2}$$
(3)

where k_1v and $k_2v^{1/2}$ corresponds to the current contributions originating from the surface capacitive effects and the diffusion-controlled insertion processes, respectively. By determining the values of k_1 and k_2 , we can further analysis contribution ratios between diffusion-controlled process and capacitive effects at different scan rates. The Eq. (3) can be changed as follows:

$$i(v) / v^{1/2} = k_1 v^{1/2} + k_2$$
 (4)

The values of k_1 and k_2 can be obtained from the slope and y intercept of the linear fit of the plot of $i(v)/v^{1/2}$ versus $v^{1/2}$, respectively. The capacitive and diffusion-controlled currents assistance to the total charge was separately calculated by inserting the values of k_1 and k_2 into the Eq. (4).

Figure S1. Elemental composition analysis of (a) MnO₂ and (b) MnO₂-3.

Figure S2. Mn 2p XPS spectra comparison of MnO₂ and MnO₂-3.

Figure S3. quantitively statistics of the percentage of Mn^{3+} and Mn^{4+} in the samples.

Figure S4. Nitrogen adsorption-desorption isotherm and pore distribution of MnO₂.

Figure S5. GCD curves at current densities from 0.1 to 0.5 A g^{-1} of (a) MnO₂ and (b) MnO₂-3.

GCD profiles in the initial 5 cycles of (c) MnO₂ and (d) MnO₂-3.

Figure S6. Capacitive and diffusion-controlled contribution analysis of the CV curves of MnO₂-3.

Figure S7. SEM images of (a) MnO₂ and (b) MnO₂-3 after 10 cycles.

Materials	Specific capacity	Cycle number	Capacity	Referenc
	(mA n g ^r)		retention	e
δ -MnO ₂	170 (0.1A g ⁻¹)	100 (0.1 A g ⁻¹)	83%	4
α-MnO ₂ @PPy	137 (0.1A g ⁻¹)	100 (0.1 A g ⁻¹)	58%	5
α-MnO ₂	180 (42 mA g ⁻¹)	30 (42 mA g ⁻¹)	76%	6
δ -MnO ₂	252 (82 mA g ⁻¹)	100 (83 mA g ⁻¹)	44%	7
δ -MnO ₂	108 (12.3 mA g ⁻¹)	125 (12.3 mA g ⁻¹)	63%	8
UCT-1-250	222 (0.1A g ⁻¹)	200 (0.1A g ⁻¹)	57%	9
γ- MnO ₂	250 (0.5 mA cm ⁻²)	40 (0.5 mA cm ⁻²)	63%	10
This work	252 (0.1A g ⁻¹)	100 (0.2A g ⁻¹)	81%	

Table S1. Comparison of electrochemical performance of other materials

References

- S. Xiong, M. Lin, L. Wang, S. Liu, S. Weng, S. Jiang, Y. Xu, Y. Jiao and J. Chen, *Applied Surface Science*, 2021, 546.
- 2. S. Zhang, S. Long, H. Li and Q. Xu, *Chemical Engineering Journal*, 2020, 400.
- J. Long, F. Yang, J. Cuan, J. Wu, Z. Yang, H. Jiang, R. Song, W. Song, J. Mao and Z. Guo, ACS Appl Mater Interfaces, 2020, 12, 32526-32535.
- 4. C. Guo, H. Liu, J. Li, Z. Hou, J. Liang, J. Zhou, Y. Zhu and Y. Qian, *Electrochimica Acta*, 2019, **304**, 370-377.
- 5. C. Guo, S. Tian, B. Chen, H. Liu and J. Li, *Materials Letters*, 2020, 262.
- 6. B. Lee, H. R. Lee, H. Kim, K. Y. Chung, B. W. Cho and S. H. Oh, *Chem Commun (Camb)*, 2015, **51**, 9265-9268.
- 7. M. H. Alfaruqi, J. Gim, S. Kim, J. Song, D. T. Pham, J. Jo, Z. Xiu, V. Mathew and J. Kim, *Electrochemistry Communications*, 2015, **60**, 121-125.
- S.-D. Han, S. Kim, D. Li, V. Petkov, H. D. Yoo, P. J. Phillips, H. Wang, J. J. Kim, K. L. More,
 B. Key, R. F. Klie, J. Cabana, V. R. Stamenkovic, T. T. Fister, N. M. Markovic, A. K. Burrell,
 S. Tepavcevic and J. T. Vaughey, *Chemistry of Materials*, 2017, 29, 4874-4884.
- Y. Wu, J. Fee, Z. Tobin, A. Shirazi-Amin, P. Kerns, S. Dissanayake, A. Mirich and S. L. Suib, ACS Applied Energy Materials, 2020, 3, 1627-1633.
- M. H. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song, J. P. Baboo, S. H. Choi and J. Kim, Chemistry of Materials, 2015, 27, 3609-3620.