ELECTRONIC SUPPLEMENTARY INFORMATION

New Journal of Chemistry

Selective Colorimetric Sensing of Deferoxamine with 4-Mercaptophenol– and Mercaptoacetic acid–Functionalized Gold Nanoparticles *via* Fe(III)-Chelation

Ömer Kaan Koç,^{ab} Elif Ezgi Benli,^b Nurşah Karahan,^b Ayşem Üzer, *^b and Reşat Apak*²³

^aInstitute of Graduate Studies, Istanbul University-Cerrahpaşa, 34320 Avcilar, Istanbul, Turkey

^bDepartment of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320 Avcilar, Istanbul, Turkey

^cTurkish Academy of Sciences (TUBA), Bayraktar Neighborhood, Vedat Dalokay St. No: 112, Çankaya, 06690 Ankara, Turkey

> *Corresponding Author (E-mail: <u>auzer@iuc.edu.tr</u>)

*Co-corresponding Author (E-mail: <u>rapak@istanbul.edu.tr</u>)

Table of Contents

1.	Abbreviations	Р3
2.	Preparation of Solution	Р3
3.	Procedure of LC–MS/MS Method for Validation of DFO Detection	Р3
4.	Supplementary Figures	Р4
5.	Supplementary Table	P8
6.	Molecular Structures	P8

1. Abbreviations

DFO, deferoxamine; 4MP, 4-mercaptophenol; MAA, mercaptoacetic acid; AuNPs, goldnanoparticles; NaOH, sodium hydroxide; MeOH, methanol; FA, formic acid.

2. Preparation of Solutions

For Au-nanoparticles synthesis, HAuCl₄ solution (0.01%, *w*/*v*) and trisodium citrate solution (1.0%, *w*/*v*) as both stabilizer and reducing agent were freshly prepared in ultrapure water. Sodium hydroxide stock solution at 0.1 M used for pH adjustment was prepared in ultrapure water. 4MP solution at 1.0 \times 10⁻⁴ M and MAA solution at 1.0 \times 10⁻⁴ M were daily prepared in ultrapure water for modification of AuNPs. Ammonium acetate buffer (pH 7.0) was prepared in ultrapure water. Fe(III) stock solution at 1.0 \times 10⁻⁴ M was prepared in ultrapure water: Fe(III) stock solution at 1.0 \times 10⁻⁴ M was prepared in ultrapure water: Fe(III) stock solution at 1.0 \times 10⁻⁴ M was prepared in ultrapure water: HCl (25:1, *v*/*v*). DFO stock solution at 1.0 \times 10⁻³ M was prepared in ultrapure water. Fe(III) and DFO solutions were stored at +4 °C. The stock solutions of metal ions (Na⁺, Mn²⁺, Mg²⁺, Co²⁺, Zn²⁺, Cr³⁺, As³⁺, Ca²⁺, Fe²⁺, Hg²⁺, and Cu²⁺), anions (Cl⁻, NO₃⁻, and NO₂⁻) and biomolecules {D(+)– glucose, tryptophan, lysine, trypsin, DL–alanine, L–leucine, and glycine} were prepared in ultrapure water and stored at +4 °C. The working solution of DFO for calibration curves of LC–MS/MS analyses was prepared daily at 10.0, 15.0, 20.0, 25.0, and 30.0 µM by diluting from the corresponding stock solution at 100.0 µM with ultrapure water.

3. Procedure of LC–MS/MS Method for Validation of DFO Detection

The working solutions of DFO at 10.0–30.0 μ M were prepared from the corresponding stock solutions of 100.0 μ M in ultrapure water. LC–MS analysis was performed on a UPLC–MS/MS equipment (Shimadzu, 20A) employing an injection volume of 20.0 μ L. LC was equipped with a Rectek Ultra-AQ column (100 × 2.1 mm, 3 μ m, C18). The column temperature was 40 °C; the injector temperature 4 °C, and the column flow rate 1.0 mL min⁻¹. The autosampler wash solution was MeOH:H₂O (1:1; ν/ν). HPLC separation was achieved using a binary gradient composed of mobile phase A {FA solution in H₂O, 0.1% (ν/ν)} and mobile phase B {FA solution in MeOH, 0.1% (ν/ν)}. The gradient used was as follows (all % values are ν/ν): from 0 to 1 min, 50% A; between 1 and 3 min, linear decrease to A 10%; between 3 and 5 min, a hold at A 10%. The mass spectrometer (Shimadzu, 8040) was functioned in the negative ion spray ionization (ESI–) mode. During operation, the mass analyser operated in the scan-only mode to obtain a mass spectrum employing selected ion monitoring (SIM) of m/z 561. The setting for MS operation were: nebulizing gas (N₂) flow, 3.0 mL min⁻¹; drying gas flow, 15.0 mL min⁻¹; gas temperature, 400 °C.

4. Supplementary Figures

Fig. S1 UV-vis spectra of simultaneously prepared AuNPs@(4MP–MAA)/Fe(III) with DFO ([DFO]: 15.0 μ M) (both synthesis and modification were made on the same day under the same conditions).

Fig. S2 UV-vis spectra of simultaneously prepared AuNPs@(4MP–MAA)/Fe(III) with DFO ([DFO]: 15.0 μ M) (both synthesis and modification were made on different days under the same conditions).

Fig. S3 Effect of pH (tris-HCl buffer) on the absorbance ratios of AuNPs@(4MP–MAA) (red squares), AuNPs@(4MP–MAA)/Fe(III) {[Fe(III)]: 1.0 μ M, orange quadrilaterals}, and AuNPs@(4MP–MAA)/Fe(III)/DFO {[Fe(III)]: 1.0 μ M, [DFO]: 40.0 μ M, blue dots}.

Fig. S4 Effect of different buffers (pH 7.0; 1: tris–HCl, 2: ammonium acetate, 3: phosphate, and 4: acetic acid–sodium acetate) on the absorbance ratios of AuNPs@(4MP–MAA) (red column), AuNPs@(4MP–MAA)/Fe(III) (orange column), and AuNPs@(4MP–MAA)/Fe(III)/DFO (blue column).

Fig. S5 Effect of incubation time on the absorbance ratios of the AuNPs@(4MP–MAA)/Fe(III) {[Fe(III)]: 1.0μ M, orange quadrilaterals} and AuNPs@(4MP–MAA)/Fe(III)/DFO {[Fe(III)]: 1.0μ M, [DFO]: 40.0μ M, blue squares}.

Fig. S6 UV–vis spectra of AuNPs@(4MP), AuNPs@(4MP)/Fe(III) ([Fe(III)]: 1.0 μM), and AuNPs@(4MP)/Fe(III)/DFO ([Fe(III)]: 1.0 μM, [DFO]: 40.0 μM) system.

Fig. S7 UV–vis spectra of AuNPs@(MAA), AuNPs@(MAA)/Fe(III) ([Fe(III)]: 1.0 μM), and AuNPs@(MAA)/Fe(III)/DFO ([Fe(III)]: 1.0 μM, [DFO]: 40.0 μM) system.

Fig. S8 Recovery of DFO from diluted Fetal Bovine Serum (FBS) {Inset: Recovery values obtained at different concentrations ($5.0-25.0 \mu$ M) of DFO}.

5. Supplementary Table

Γ	Metal Ions		Anions			Biochemical Species		
Interferent	Recovery (%)		Interferent	Recovery (%)		Interferent	Recovery (%)	
interierent	Fe(III) ^a	DFO ^b	interierent	Fe(III)ª	DFO ^b	interferent	Fe(III) ^a	DFO ^b
Na(I)	103.95	96.30	Cl-	98.48	100.95	D(+) Glucose	95.28	100.16
Mn(II)	104.30	101.44	CO32-	97.72	104.34	Tryptophan	94.31	102.41
Mg(II)	105.19	103.85	NO ₃ -	102.27	105.46	Lysine	97.87	102.57
Co(II)	103.09	102.41	NO ₂ ⁻	94.93	104.12	Trypsin	100.37	99.83
Zn(II)	101.81	103.69				DL-Alanine	104.92	99.19
Cr(III)	96.21	102.57				L-Leucine	95.45	100.32
As(III)	95.42	99.35				Glycine	100.36	102.73
Ca(II)	98.48	101.92						
Fe(II)	101.13	101.28						
Hg(II)	104.92	98.39						
Cu(II)	100.71	100.96						

Table S1 Recovery (%) of Fe(III) ions and of DFO with the developed nanoprobe system in the presence

 of metal ions, common anions, and biochemical species.

^aPercentage recoveries of Fe(III) ions with the AuNPs@(4MP-MAA) sensing system in the presence of metal ions, common anions, and biochemical species. ^bPercentage recoveries of DFO with the AuNPs@(4MP-MAA) sensing system in the presence of metal ions, common anions, and biochemical species.

6. Molecular Structures

Structure 1 Molecular structure of deferoxamine (DFO, Molecular formula: C₂₅H₄₈N₆O₈, Molar mass: 656.79 g.mol⁻¹)

Structure 2 Molecular structure of 4-mercaptophenol (4MP, Molecular formula: C_6H_6OS , Molar mass: 126.18 g.mol⁻¹).

Structure 3 Molecular structure of mercaptoacetic acid (MAA, Molecular formula: $C_2H_4O_2S$, Molar mass: 92.12 g.mol⁻¹).