Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary Information

Enantioselective organocatalytic formal [3+2]cycloaddition of isatin-derived ketimines with benzylidenemalononitriles and benzylidineindanones

Conor Duffy,^a William E. Roe,^a Aislinn M. Harkin,^a Ryan McNamee^b and Peter C. Knipe^{*a}

^a School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Belfast, BT9 5AG, UK

^b Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK

1 Contents

2	Gen	eral Experimental3	;
	2.1	Naming and Numbering of Compounds3	;
	2.2	Solvents and reagents	•
	2.3	Purification3	;
	2.4	Spectroscopy3	;
	2.5	Mass Spectrometry4	ŀ
	2.6	High-Pressure Liquid Chromatography (HPLC)4	ł
	2.7	Crystallography4	ł
	2.8	Melting Points	,
3	Expe	erimental procedures and characterisation data6	;
	3.1	Starting materials6	;
	3.2	Catalyst synthesis	;
	3.3	Spirooxindole products25	,
4	HPL	C data	;

5	Kine	etic Study	81
	5.1	Kinetic profiling and catalyst screening experiments	81
	5.2	HPLCs Traces for Catalyst Screen	84
6	X-ra	ay Crystallography	88
	6.1	Single Crystal Data for (–)-3d _{maj} (CCDC 2103731)	88
	6.2	Single Crystal Data for (–)-3I _{maj} (CCDC 2114148)	89
	6.3	Single Crystal Data for (±)-5a (CCDC 2103730)	90
7	NM	R spectra	91
8	Refe	erences	216

2 General Experimental

2.1 Naming and Numbering of Compounds

Systematic compound names are those generated by ChemBioDraw[™] Ultra version 15.1.0.144 (Perkin Elmer) following IUPAC nomenclature.

2.2 Solvents and reagents

Unless stated otherwise, all other solvents and reagents used were directly obtained from commercial sources. Anhydrous and oxygen-free THF was obtained by distillation from Na/benzophenone. Due to the air and moisture sensitive nature of several of the reactions, glassware was oven-dried prior to use and the reaction performed under an inert (argon) atmosphere, with solvents being dried over 3 Å molecular sieves prior to their use. Anhydrous solvents were degassed with argon for 15 minutes immediately prior to use.

2.3 Purification

Flash column chromatography was carried out using Fluorochem 60 40-63 micron silica gel. Thin-layer chromatography was carried out using Merck Kieselgel 60 F254 (230-400 mesh) fluorescent treated silica, visualized under UV light (254 nm) or by staining with aqueous potassium permanganate solution, ninhydrin or ceric ammonium molybdate solutions.

2.4 Spectroscopy

¹H, ¹³C, and ¹⁹F NMR spectra were obtained using Bruker 600, or 400 MHz spectrometers using either CDCl₃ or DMSO-d₆ as the solvent. To analyse and process the NMR spectra, TopSpinTM software was used, and spectra were calibrated against residual non-deuteriated solvent peaks as internal standards. The chemical shifts are reported in parts per million (ppm) and coupling constants (*J*) are reported in Hertz (Hz). ¹H NMR spectra are reported as follows: δ /ppm (number of protons, multiplicity, coupling constant, assignment of peak (if possible)). The multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. ¹³C NMR spectra are reported as follows: δ /ppm (assignment). Chemical structures are numbered arbitrarily for the purpose of assignment; this numbering scheme does not necessarily correspond with the systematic name of the compound. Two-dimensional NMR experiments (COSY, HSQC, HMBC, NOESY) were also recorded when necessary to help aid assignment of the proton and carbon peaks.

Infra-red (IR) spectra were recorded on an Agilent Cary 630 spectrometer equipped with an attenuated total reflectance (ATR) accessory. Samples were deposited on the ATR as a thin film or neat solid. Only selected maximum absorbances (v_{max}) of the most intense peaks are reported (cm⁻¹).

Optical rotations were recorded at the sodium D-line (589 nm) using a Perkin Elmer 341 polarimeter at a temperature of 20 °C and are reported in degrees using concentrations (*c*) in g.100 mL⁻¹. Reported values are the average of eight readings

2.5 Mass Spectrometry

Liquid chromatography-mass spectrometry (LCMS) analyses were conducted using an instrument comprising an Agilent 1260 HPLC (equipped with Infinity II quaternary pump, vial sampler, integrated column compartment and variable wavelength detector) and MSD single quadrupole mass spectrometer. Samples were analysed using an Agilent Infinitylab poroshell 120 column (2.7 μ m, 2.1 x 150 mm) under an acetonitrile/water gradient with 0.1% HCOOH additive.

High resolution mass spectra (HRMS) were recorded by Analytical Services and Environmental Projects (ASEP) at Queen's University Belfast on a Waters LCT Premier ToF mass spectrometer using the electrospray ionisation (ESI) technique.

2.6 High-Pressure Liquid Chromatography (HPLC)

HPLC was performed on Agilent 1260 and Agilent 1100 instruments, eluting under reverse phase (acetonitrile-water) and normal phase (hexane/chloroform-isopropanol) conditions respectively. The columns, solvents, flow rates and acquisition wavelengths used for individual compounds can be found in section 3.3.

2.7 Crystallography

Low temperature¹ single crystal Xray diffraction studies were carried out using CuK_{α} radiation on an Agilent Supernova diffractometer equipped with an area detector and graphite monochromator. Raw frame data were reduced using CrysAlisPRO² solved using SHELXT³ (**3d**) and Superflip (**5a**).⁴ Full-matrix least-squares refinement of the structures were carried out using CRYSTALS.^{5,6} Full refinement details are given in the supplementary material (CIF). CCDC 2103730, 2103731 and 2114148 contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre and copies can be obtained free of charge *via* www.ccdc.cam.ac.uk/data_request/cif.

2.8 Melting Points

Melting points were determined for compounds where a recrystallization was carried out. These were acquired on a Stuart SMP10 digital melting point apparatus. Values are given in °C and are uncorrected.

3 Experimental procedures and characterisation data

3.1 Starting materials

General procedure 1 (GP1) for the synthesis of benzylidene derivatives

To a solution of active methylene compound (1 eq.) in $EtOH:H_2O$ (3:7 *v:v*) was added the aldehyde (1 eq.) in one portion. The mixture was stirred, placed under argon and warmed to 75 °C, and reaction progress was monitored by TLC. Upon completion, the reaction mixture was cooled to RT and the precipitate filtered under vacuum and washed with pure water (2 mL) or purified by flash column chromatography to afford the products.

2-Benzylidenemalononitrile (2a)

Synthesised following **GP1** according to a literature procedure, and the data obtained are consistent with those previously reported.⁷

Malononitrile (2.00 g, 30.3 mmol, 1 eq.) and benzaldehyde (3.08 mL, 30.3 mmol, 1 eq.) after 17 h in EtOH:H₂O (3:7, 120 mL) afforded the product (4.58 g, 98%) as a white solid. δ_{H} (400 MHz, CDCl₃): 7.91 (2H, d, J 7.6 Hz, H5), 7.78 (1H, s, H3), 7.64 (1H, t, J 7.6 Hz, Ar), 7.54 (2H, t, J 7.8 Hz, Ar); δ_{C} (101 MHz, CDCl₃): 160.1(C3), 134.8 (C5), 131.9 (Ar), 130.8 (Ar), 129.8 (C4), 113.7 (C1'), 112.7 (C1), 83.0 (C2).

2-(4-Methoxybenzylidene)malononitrile (2b)

Synthesised following **GP1** according to a literature procedure, and the data obtained are consistent with those previously reported.⁷

Malononitrile (0.5 g, 7.57 mmol, 1 eq.) and 4-methoxybenzaldehyde (0.921 mL, 7.57 mmol, 1 eq.) after 19 h in EtOH:H₂O (3:7, 30 mL) afforded the product (1.39 g, 99%) as a fluffy, yellow solid. δ_H (400 MHz, CDCl₃): 7.91 (2H, m, *Ar*), 7.65 (1H, s, H**3**), 7.01 (2H, m, *Ar*), 3.91 (3H, s, H**8**); δ_c (101 MHz,

CDCl₃): 165.0 (**C7**), 156.0 (**C3**), 133.6 (*Ar*), 124.2 (**C4**), 115.3 (*Ar*), 114.6 (**C1**), 113.5 (**C1'**), 78.8 (**C2**), 55.8 (**C8**).

2-(4-Nitrobenzylidene)malononitrile (2c)

Synthesised following **GP1** according to a literature procedure, and the data obtained are consistent with those previously reported.⁷

Malononitrile (0.5 g, 7.57 mmol, 1 eq.) and 4-nitrobenzaldehyde (1.14 g, 7.57 mmol, 1 eq.) after 18 h in EtOH:H₂O (3:7, 30 mL) afforded the product (1.36 g, 90%) as a brown solid. δ_H (400 MHz, CDCl₃): 8.39 (2H, d, *J* 8.8 Hz, *Ar*), 8.07 (2H, d, *J* 8.8 Hz, *Ar*), 7.88 (1H, s, H3); δ_C (101 MHz, CDCl₃): 156.0 (C3), 150.5 (C7), 135.9 (C4), 131.4 (*Ar*), 124.8 (*Ar*), 112.8 (C1'), 111.7 (C1), 87.7 (C2).

2-(Naphthalen-2-ylmethylene)malononitrile (2d)

Synthesised following **GP1** according to a literature procedure, and the data obtained are consistent with those previously reported.⁷

Malononitrile (0.25 g, 3.78 mmol, 1 eq.) and 2-naphthaldehyde (0.590 g, 3.78 mmol, 1 eq.) after 1.5 h in EtOH:H₂O (3:7, 15 mL) afforded the product (0.768 g, 99%) as a yellow solid. δ_{H} (400 MHz, CDCl₃): 8.29 (1H, s), 8.07 (1H, dd, *J* 8.7, 1.8 Hz), 7.92 (4H, m), 7.68 (1H, t, *J* 6.9 Hz), 7.61 (1H, t, *J* 7.0 Hz); δ_{C} (101 MHz, CDCl₃): 159.9, 136.0, 134.6, 132.8, 130.1, 129.8, 128.7, 128.2, 127.8, 124.4, 114.1, 113.0 82.4.*

^{*} One expected ¹³C signal is absent due to co-incidence with another peak.

2-(2-methylbenzylidene)malononitrile (2e)

The reaction was carried out according to a literature procedure and the data obtained are consistent with those previously reported.⁸

o-Tolualdehyde (0.46 ml, 3.97 mmol, 1 eq.), malononitrile (0.46 ml, 3.92 mmol, 1 eq.), and K_2CO_3 (56 mg, 0.405 mmol, 0.1 eq.) were added into a mortar and ground rapidly at rt for 1 min. The mixture was washed with water and filtered, and the crude product then recrystallized from ethanol, to yield the product as white needles, 280 mg, 43%. M.p. = 107-110 °C (EtOH).

 $δ_{H}$ (400 MHz, CDCl₃): 8.10 (1H, s), 8.08 (1H, d, J 8.8 Hz), 7.50 (1H, td, J 7.5, 1.2 Hz), 7.37 (1H, d, J 7.8 Hz), 7.33 (1H, d, J 7.8 Hz), 2.45 (3H, s); $δ_{C}$ (101 MHz, CDCl₃): 158.3, 139.9, 134.3, 131.5, 130.1, 128.4, 127.2, 113.9, 112.6, 84.2, 19.9; **HRMS** (ESI+): found 201.0979; C₈H₄N₂OCH₅O, [M+MeOH+H]⁺ requires 201.1022; $ν_{max}$ (neat): 2967.0, 2221.5, 1572.9, 1371.7, 1230.0, 1058.6.

2-(2-Bromobenzylidene)malononitrile (2f)

Synthesised following **GP1** by analogy to a literature procedure,⁷ and the data obtained are consistent with those previously reported.⁹

Malononitrile (0.25 g, 3.78 mmol, 1 eq.) and 2-bromobenzaldehyde (0.441 mL, 3.78 mmol, 1 eq.) after 21 h in EtOH:H₂O (3:7, 15 mL) afforded the product (0.499 g, 57%) as a brown solid. *δ_H* (400 MHz, CDCl₃): 8.22 (1H, s, **H3**), 8.12 (1H, dd, *J* 7.6, 1.8 Hz, *Ar*), 7.74 (1H, dd, *J* 7.8, 1.5 Hz, *Ar*), 7.47 (2H, m, **H7**-8); *δ_c* (101 MHz, CDCl₃): 158.9 (C3), 135.1 (*Ar*), 134.2 (*Ar*), 131.0 (C5), 130.0 (*Ar*), 128.5 (*Ar*), 126.6 (C4), 113.3 (C1'), 111.9 (C1), 86.2 (C2).

2-(4-Chlorobenzylidene)malononitrile (2g)

Synthesised following **GP1** according to a literature procedure, and the data obtained are consistent with those previously reported.⁷

Malononitrile (0.25 g, 3.78 mmol, 1 eq.) and 4-chlorobenzaldehyde (0.531 g, 3.78 mmol, 1 eq.) after 1 h in EtOH:H₂O (3:7, 15 mL) afforded the product (0.65 g, 91%) as a white powder. δ_H (400 MHz, CDCl₃): 7.85 (2H, d, J 8.6 Hz, *Ar*), 7.73 (1H, s, **H3**), 7.52 (2H, d, J 8.6 Hz, *Ar*); δ_C (101 MHz, CDCl₃): 158.4 (**C3**), 141.3 (**C7**), 132.0 (*Ar*), 130.2 (*Ar*), 129.4 (**C4**), 113.6 (**C1**), 112.5 (**C1'**), 83.5 (**C2**).

2-(3,4,5-Trimethoxybenzylidene)malononitrile (2h)

Synthesised following **GP1** according to a literature procedure.⁷

Malononitrile (0.25 g, 3.78 mmol, 1 eq.) and 3,4,5-trimethoxybenzaldehyde (0.741 g, 3.78 mmol, 1 eq.) after 1.5 h in EtOH:H₂O (3:7, 15 mL) afforded the product (0.886 g, 96%) as a bright yellow solid. δ_{H} (400 MHz, CDCl₃): 7.65 (1H, s, H3), 7.19 (2H, s, H5), 3.98 (3H, s, H9), 3.91 (6H, s, H8); δ_{C} (101 MHz, CDCl₃): 159.5 (C3), 153.4 (C6), 144.2 (C7), 126.1 (C4), 114.1 (C1'), 113.3 (C1), 108.5 (C5), 80.8 (C2), 61.4 (C9), 56.5 (C8); HRMS (ESI+): found 283.0496; C₁₃H₁₂KN₂O₃, [M+K]⁺ requires 283.0485; v_{max} (neat): 2939.0, 2219.6, 1567.3, 1498.4, 1343.7, 1321.3, 1258.0, 1127.5, 698.9.

2-(furan-2-ylmethylene)malononitrile (2i)

The reaction was carried out according to a literature procedure and the data obtained are consistent with those previously reported.⁸

Furfural (0.64 ml, 7.73 mmol, 1 eq.), malononitrile (510 mg, 7.72 mmol, 1 eq.), and K_2CO_3 (115 mg, 0.832 mmol. 0.11 eq.) were added into a mortar and ground rapidly at rt for 1 min. The mixture was washed with water and filtered, and the crude product was purified via flash column chromatography (100% DCM), to yield the product as yellow solid, 490 mg, 44 %.

 $δ_{H}$ (400 MHz, CDCl₃): 7.80 (1H, d, J 1.4, H7), 7.51 (1H, s, H3), 7.35 (1H, d, J 3.5 Hz, H5), 6.71 (1H, dd, J, 3.7, 1.7 Hz, H6); $δ_{C}$ (101 MHz, CDCl₃): 149.7 (C7), 148.2 (C4), 143.1 (C3), 123.6 (C5), 114.6 (C6), 113.9 (C1'), 112.7 (C1), 77.7 (C2); HRMS (ESI+): found 162.0667; C₈H₄N₂ONH₄, [M+NH₄]⁺ requires 162.0662; $ν_{max}$ (neat): 3041.5, 2225.2, 1602.8, 1453.7, 1394.0, 1297.1, 1017.6.

2-(3-phenylpropylidene)malononitrile (2j)

The reaction was carried out according to a literature procedure and the data obtained are consistent with those previously reported.⁸

Cinnamaldehyde (0.96 ml, 7.63 mmol, 1 eq.), malononitrile (506 mg, 7.66 mmol, 1 eq.), and K₂CO₃ (118 mg, 0.854 mmol, 0.11 eq.) were added into a mortar and ground rapidly at rt for 10 min. The mixture was washed with water and filtered, and the crude product then recrystallized from ethanol, to yield the product as a yellow solid, 590 mg, 43%. M.p. = 127-130 °C (EtOH). δ_{H} (400 MHz, CDCl₃): 7.63-7.53 (3H, m), 7.51-7.42 (3H, m), 7.32-7.21 (2H, m); δ_{C} (101 MHz, CDCl₃): 160.2, 150.6, 134.1, 132.2, 129.5, 129.1, 122.4, 113.6, 111.8, 83.1; HRMS (ESI+): found 181.0766; C₁₂H₈N₂H, [M+H]⁺ requires 181.0760; v_{max} (neat): 2970.7, 2221.5, 1606.5, 1446.2, 1174.1, 1054.8.

Ethyl-2-cyano-3-phenylacrylate (21)

Synthesised following **GP1** according to a literature procedure and the data obtained are consistent with those previously reported.⁷

Ethyl cyanoacetate (0.5 mL, 4.70 mmol, 1 eq.) and benzaldehyde (0.477 mL, 4.70 mmol, 1 eq.) were heated at 75 °C for 24 h in EtOH:H₂O (3:7, 15 mL). The mixture was cooled to RT, extracted with EtOAc (3x30 mL), dried over MgSO₄, filtered, and concentrated *in vacuo*. The residue was purified by flash column chromatography (silica gel, PhMe:Et₂O 99:1) to afford the product (0.245 g, 26%) as a white solid. δ_H (400 MHz, CDCl₃): 8.25 (1H, s, H**3**), 7.99 (2H, d, *J* 7.1 Hz, H**5**), 7.53 (3H, m, H**6-7**), 4.39 (2H, q, *J* 7.1 Hz, H**9**), 1.40 (3H, t, 7.1 Hz, H**10**); δ_C (101 MHz, CDCl₃): 162.6 (**C8**), 155.2 (**C3**), 133.4 (*Ar*), 131.6 (**C4**), 131.2 (**C5**), 129.4 (*Ar*), 115.6 (**C1**), 103.2 (**C2**), 62.9 (**C9**), 14.3 (**C10**).

2-(3-phenylpropylidene)malononitrile (20)

The reaction was carried out according to a literature procedure¹⁰ and the data obtained are consistent with those previously reported.¹¹

To a solution of hydrocinnamaldehyde (0.41 mL, 3.48 mmol, 1.0 eq.) and malononitrile (375 mg, 5.68 mmol, 1.6 eq.) under an inert atmosphere of argon in dry CH₂Cl₂ (15 mL) was added K₂CO₃ (262 mg, 1.89 mmol, 0.5 eq.). The reaction mixture was stirred at room temperature for 16 h, after which the solvent was then removed in vacuo and the residue quenched with ice cold water and then extracted with EtOAc (3 x 10 mL). The combined organic layers were then washed with brine, dried over MgSO₄, filtered under gravity and then concentrated in vacuo. The crude residue was then purified by short silica plug (30 % DCM:petroleum ether) to afford the product (248 mg, 39%) as a yellow oil.

δ_H (400 MHz, CDCl₃): 7.34 (2H, t, *J* 6.9 Hz), 7.30-7.26 (2H, m) 7.17 (1H, d, *J* 6.8 Hz), 2.96-2.85 (4H, m); **δ**_c (101 MHz, CDCl₃): 168.3, 138.3, 129.2, 128.4. 127.3. 112.1, 110.5. 90.8, 34.4, 33.7.

2-benzylidene-1H-indene-1,3(2H)-dione (4a)

The reaction was carried out according to a literature procedure and the data obtained are consistent with those previously reported.¹²

To a round-bottom flask under an inert atmosphere of argon and equipped with a magnetic stir bar, was added 1,3-indandone (438 mg, 3.00 mmol, 1eq.), benzaldehyde (0.35 ml, 3.30 mmol, 1.1 eq.), *L*-proline (104 mg, 0.899 mmol, 0.3 eq.) and dry MeOH (6 ml). The reaction was then left to stir at rt for 20 hours, with a precipitate forming over time. Following this, the precipitate was then filtered under vacuum and washed several times with MeOH to yield the product as a khaki solid, 631 mg, 90 %.

 $δ_{H}$ (400 MHz, CDCl₃): 8.46 (2H, d, J 8.3), 8.05-7.99 (2H, m), 7.90 (1H, s), 7.84-7.79 (2H, m), 7.59-7.49 (3H, m).; $δ_{C}$ (101 MHz, CDCl₃): 190.4, 189.1, 147.1, 142.7, 140.2, 135.5, 135.3, 134.3, 133.3, 133.2, 129.3, 128.9, 123.5, 123.4; HRMS (ESI+): found 235.0764; $C_{16}H_{10}O_{2}H$, [M+H]⁺ requires 235.0754; $ν_{max}$ (neat): 2113.4, 1681.0, 161.2, 1587.8, 1349.3, 1200.2.

(E)-2-benzylidene-2,3-dihydro-1H-inden-1-one (4b)

The reaction was carried out according to a literature procedure and the data obtained are consistent with those previously reported.¹³

To a round-bottom, equipped with a magnetic stir bar, was added indanone (333 mg, 2.52 mmol, 1 eq.), benzaldehyde (0.27 ml, 2.52 mmol, 1 eq.) and EtOH (1.4 ml). Following this the solution was then cooled down to 0 °C and 10 % NaOH (1.4 ml) solution then added dropwise. The solution was then left to stir at 0 °C for 2 hours. Once the reaction had finished the solid was then filtered under vacuum and washed with H_2O and hexane. The solid was then dried under high vac to yield the product as a faint pink solid, 485 mg, 87%.

 $δ_{H}$ (400 MHz, CDCl₃): 7.91 (1H, d, *J* 7.7 Hz), 7.67 (3H, d, *J* 6.7 Hz), 7.61 (1H, td, *J* 7.7, 1.1 Hz), 7.55 (1H, d, *J* 7.6 Hz), 7.49-7.37 (4H, m), 4.05 (2H, s); $δ_{C}$ (101 MHz, CDCl₃): 194.4, 149.8, 138.1, 135.5, 134.9, 134.7, 134.0, 130.8, 129.8, 129.1, 127.8, 126.3, 124.6, 32.6; HRMS (ESI+): found 221.0935; C₁₆H₁₂OH, [M+H]⁺ requires 221.0961, found 441.1826; C₃₂H₁₂O₂H, [2M+H]⁺ requires 441.1849; $ν_{max}$ (neat): 2133.4, 1871.1, 1621.4, 1688.5, 1580.4 1446.2.

N-Benzyl isatin (S1)

The reaction was carried out according to a literature procedure and the data obtained are consistent with those previously reported.¹⁴

To a stirred solution of isatin (3.00 g, 20.4 mmol) and potassium carbonate (8.45 g, 61.2 mmol, 3 eq.) in acetonitrile (200 mL) was added benzyl bromide (2.67 mL, 22.4 mmol, 1.1 eq.) dropwise *via* syringe. The reaction was heated to 95 °C and refluxed for 4 h until completion. The mixture was cooled to RT and concentrated *in vacuo*. The crude product was recrystallised from PhMe to afford the product (4.42 g, 91%) as a red-orange crystalline solid. M.p. = 136-139 °C (PhMe). δ_H (400 MHz, CDCl₃): 7.61 (1H, d, *J* 7.5 Hz, H3), 7.48 (1H, td, *J* 7.8, 1.3 Hz, H1) 7.40-7.27 (5H, m, H11-13), 7.09 (1H, td, *J* 7.5, 0.8 Hz, H2), 6.78 (1H, d, *J* 7.8 Hz, H4), 4.93 (2H, s, H9); δ_c (101 MHz, CDCl₃): 183.3 (C7), 158.4 (C8), 150.9 (C5/6), 138.4 (C1), 134.7 (C10), 129.2 (C12/13), 128.3 (C12/13), 127.6 (C11), 125.5 (C3), 123.9 (C2), 117.9 (C5/6), 111.1 (C4), 44.2 (C9); HRMS (ESI+): found 276.0434; C₁₅H₁₁NO₂K, [M+K]⁺ requires 276.0421; v_{max} (neat): 1725.8, 1606.5, 1468.6, 1345.6.

(Z)-1-Benzyl-3-((2,2,2-trifluoroethyl)imino)indolin-2-one (1a)

The reaction was carried out according to a literature procedure and the data obtained are consistent with those previously reported.¹⁵

N-benzyl isatin (2.00 g, 8.43 mmol, 1 eq.), 2,2,2-trifluoroethylamine (0.99 mL, 12.6 mmol, 1.5 eq.), *p*-TsOH.H₂O (0.16 g, 0.843 mmol, 0.1 eq.) and MgSO₄ (3.00 g, 25.3 mmol, 3 eq.) were dissolved in toluene (75 mL) and refluxed in a sealed tube at 120 °C until completion. The solution was cooled to RT, washed with NaHCO₃ (40 mL) and extracted with DCM (2x40 mL). Solvent removed *in vacuo* and the crude residue was recrystallised from MeOH to afford the product (1.96 g, 73%) as an 12:1 mixture of *Z*:*E* isomers as a yellow solid. M.p. = 127-130 °C (MeOH). δ_H (400 MHz, CDCl₃, major isomer): 7.73 (1H, d, *J* 7.5 Hz, H3), 7.38-7.29 (6H, m, H1,11-13), 7.09 (1H, t, *J* 7.6 Hz, H2), 6.74 (1H, d, *J* 7.8 Hz, H4), 4.90 (2H, s, H9), 4.87 (2H, q, *J* 9.7 Hz, H14); δ_C (101 MHz, CDCl₃): 158.7 (C8), 155.7 (C7), 145.6 (C5/6), 135.1 (C10), 133.8 (C1), 129.1 (C12/13), 128.2 (C11), 127.5 (C12/13), 125.2 (q, *J*_{C-F} 277 Hz, C15), 123.6 (C4), 123.2 (C3), 120.9 (C5/6), 109.9 (C2) 53.8 (q, *J*_{C-F} 31.5 Hz, C14), 43.8 (C9); δ_F (376 MHz, CDCl₃): - 71.9 (t, *J* 9.7 Hz).

N-Methyl isatin (S2)

The reaction was carried out according to a literature procedure and the data obtained are consistent with those previously reported.¹⁶

To a stirred solution of isatin (0.5 g, 3.40 mmol) and potassium carbonate (0.94 g, 6.80 mmol, 2 eq.) in DMF (5 mL) in a sealed tube, was added iodomethane (0.423 mL, 6.80 mmol, 2 eq.) dropwise at RT. The reaction was heated to 40 °C until completion. After 22 h, the mixture was cooled to RT, diluted with DCM (20 mL) and H_2O (20 mL), extracted and washed with brine (2x20 mL). The mixture was dried

over MgSO₄, filtered and concentrated *in vacuo*, affording the product (0.439 g, 80%) as a red-orange solid. *δ*_H (400 MHz, CDCl₃): 7.62-7.56 (2H, m, **H1,3**), 7.11 (1H, t, *J* 7.8 Hz, **H2**), 6.89 (1H, d, *J* 7.8 Hz, **H4**), 3.24 (3H, s, **H9**); *δ*_C (101 MHz, CDCl₃): 183.5 (**C7**), 158.4 (**C8**), 151.6 (**C5/6**), 138.5 (**C3**), 125.4 (**C1**), 124.0 (**C2**), 117.6 (**C5/6**), 110.1 (**C4**), 26.3 (**C9**).

(Z)-1-Methyl-3-((2,2,2-trifluoroethyl)imino)indolin-2-one (1b)

The reaction was carried out by analogy to a literature procedure, and the data obtained are consistent with those previously reported.¹⁵

N-methyl isatin (252 mg, 1.56 mmol, 1 eq.), 2,2,2-trifluoroethylamine (180 μ L, 2.29 mmol, 1.5 eq.) and *p*-TsOH.H₂O (11.8 mg, 0.062 mmol, 0.1 eq.) were dissolved in toluene (9 mL) and refluxed in a sealed tube at 120 °C until completion. After 24 h the solution was cooled to RT, solvent removed *in vacuo* and the crude residue was purified by flash column chromatography (silica gel, petrol:ethyl acetate, 19:1) to afford the product (95.4 mg, 26%) as an 11:1 mixture of Z:E isomers as an orange solid.

*δ*_H (400 MHz, CDCl₃, major isomer): 7.71 (1H, d, *J* 7.7 Hz, **H3**), 7.47 (1H, t, *J* 7.7 Hz, **H1**), 7.12 (1H, t, *J* 7.5 Hz, **H2**), 6.84 (1H, d, *J* 7.9 Hz, **H4**), 4.83 (2H, q, *J* 9.8 Hz, **H10**), 3.22 (3H, s, **H9**); *δ*_C (101 MHz, CDCl₃): 158.8 (C8), 155.9 (C7), 146.4 (C5/6), 133.9 (C3), 125.1 (q, *J*_{C-F} 276.1 Hz, C11), 123.6 (C2), 123.1 (C1), 120.7 (C5/6), 108.9 (C4), 53.6 (q, *J*_{C-F} 32.3 Hz, C10), 26.0 (C9); Major *δ*_F (376 MHz, CDCl₃): -71.9 (t, *J* 9.9 Hz).

1-Benzyl-6-chloroindoline-2,3-dione (S3)

The reaction was carried out according to a literature procedure.¹⁴

To a stirred solution of 6-chloroisatin (1.00 g, 5.50 mmol, 1 eq.) and potassium carbonate (2.28 g, 16.5 mmol, 3 eq.) in acetonitrile (55 mL) was added benzyl bromide (0.98 mL, 8.26 mmol, 1.1 eq.) dropwise *via* syringe. The reaction was heated to 95 °C and refluxed overnight until completion. The mixture was cooled to RT, filtered under gravity and concentrated *in vacuo*. The crude product was recrystallised from PhMe to afford the product (1.14 g, 76%) as a burnt-orange crystalline solid. M.p. = 175-177 °C (PhMe). δ_{H} (400 MHz, CDCl₃): 7.54 (1H, d, *J* 8.0 Hz, H3), 7.40-7.29 (5H, m, H11-13), 7.07 (1H, dd, *J* 8.0, 1.6 Hz, H2), 6.78 (1H, d, *J* 1.5 Hz, H4), 4.91 (2H, s, H9); δ_{c} (101 MHz, CDCl₃): 181.9 (C=O), 158.3 (C=O), 151.8 (C5/6), 144.8 (C5/6), 134.1 (C10), 129.3 (C12/13), 128.5 (C12/13), 127.5 (*C11*), 126.5 (C3), 124.2 (C2), 116.1 (C1), 111.8 (C4), 44.3 (C9); HRMS (ESI+): found 272.0478; C₁₅H₁₀ClNO₂H, [M+H]⁺ requires 272.0472; v_{max} (neat): 3078.8, 1731.3, 1608.3, 1425.7, 1347.4, 1254.2, 1071.6.

(Z)-1-benzyl-6-chloro-3-((2,2,2-trifluoroethyl)imino)indolin-2-one (1c)

1-benzyl-6-chloroindoline-2,3-dione **S3** (300 mg, 1.10 mmol, 1 eq.), 2,2,2-trifluoroethylamine (0.13 mL, 1.66 mmol, 1.5 eq.), *p*-TsOH.H₂O (25 mg, 0.13 mmol, 0.12 eq.) and MgSO₄ (500 mg, 4.15 mmol, 3.8 eq.) were dissolved in toluene (10 mL) and refluxed in a sealed tube at 120 °C until completion. The solution was cooled to RT, washed with NaHCO₃ (20 mL) and extracted with DCM (3x15 mL). Solvent removed *in vacuo* and the crude residue was recrystallised from MeOH to afford the product (122 mg, 31 %) as an 75:1 mixture of *Z*:*E* isomers as a mustard-yellow solid. M.p. = 155-157 °C (MeOH). δ_{H} (400 MHz, CDCl₃, major isomer): 7.65 (1H, d, *J* 8.0 Hz, H**3**), 7.37-7.27 (5H, m, H**11-13**), 7.06 (1H, d, *J* 7.9 Hz, H**2**), 6.74 (1H, s, H**4**), 4.88 (2H, s, H**9**), 4.85 (2H, q, *J* 9.8 Hz, H**14**); δ_{C} (101 MHz, CDCl₃): 158.6 (**C8**), 154.6 (**C7**), 146.6 (**C5/6**), 139.9 (**C5/6**), 134.6 (**C10**), 129.3 (*Ar*), 128.4 (*Ar*), 127.5 (*Ar*), 125.1 (q, *J*_{C-F} 276 Hz, **C15**), 124.3 (**C3**), 123.8 (**C2**), 119.3 (**C1**), 110.6 (**C4**), 53.9 (q, *J*_{C-F} 32.5 Hz, **C14**), 43.9 (**C9**); δ_{F} (376 MHz, CDCl₃): -71.9 (3F, t, *J* 9.7 Hz); HRMS (ESI+): found 353.0669; C₁₇H₁₂ClF₃N₂OH, [M+H]⁺ requires 353.0663; **v**_{max} (neat): 2115.3, 1716.4, 1612.1, 1367.9, 1267.3, 1146.2.

1-benzyl-5-methoxyindoline-2,3-dione (S4)

The reaction was carried out according to a literature procedure and the data obtained are consistent with those previously reported.¹⁴

To a stirred solution of 5-methoxyisatin (1.00 g, 5.64 mmol, 1 eq.) and potassium carbonate (2.34 g, 16.9 mmol, 3 eq.) in acetonitrile (55 mL) was added benzyl bromide (1.00 mL, 8.47 mmol, 1.1 eq.) dropwise *via* syringe. The reaction was heated to 95 °C and refluxed until completion (4 h). The mixture was cooled to RT, filtered under gravity and concentrated *in vacuo*. The crude product was recrystallised from PhMe to afford the product (1.45 g, 96%) as a burgundy crystalline solid. M.p. = 119-121 °C (PhMe). δ_{H} (400 MHz, CDCl₃): 7.37-7.27 (5H, m, H11-13), 7.14 (1H, d, *J* 2.8 Hz, H3), 7.02 (1H, dd, *J* 8.6, 2.8 Hz, H1), 6.68 (1H, d, *J* 8.6 Hz, H4), 4.90 (2H, s, H9), 3.76 (3H, s, H14); δ_{c} (101 MHz, CDCl₃): 183.7 (C=O), 158.5 (C=O), 156.7 (C2), 144.7 (C5/6), 134.7 (C10), 129.1 (*Ar*), 128.2 (*Ar*), 127.5 (*Ar*), 124.8 (C1), 118.2 (C5/6), 112.1 (C3), 109.7 (C4), 56.1 (C14), 44.2 (C9).

(Z)-1-benzyl-5-methoxy-3-((2,2,2-trifluoroethyl)imino)indolin-2-one (1d)

1-benzyl-5-methoxyindoline-2,3-dione **S4** (300 mg, 1.12 mmol, 1 eq.), 2,2,2-trifluoroethylamine (0.15 mL, 1.68 mmol, 1.5 eq.), *p*-TsOH.H₂O (21 mg, 0.11 mmol, 0.10 eq.) and MgSO₄ (405 mg, 3.37 mmol, 3.0 eq.) were dissolved in toluene (10 mL) and refluxed in a sealed tube at 120 °C until completion (24 h). The solution was cooled to RT, washed with NaHCO₃ (20 mL) and extracted with DCM (3x15 mL). Solvent removed *in vacuo* and the crude residue was recrystallised from MeOH to afford the product (263 mg, 67 %) as an 24:1 mixture of *Z:E* isomers as an orange solid. M.p. = 144-147 °C (MeOH). δ_{H} (400 MHz, CDCl₃, major isomer): 7.39-7.26 (6H, m, H**3 + H11-13**), 6.89 (1H, dd, *J*

8.4, 2.2 Hz, H1), 6.63 (1H, d, J 8.5 Hz, H4), 4.89 (2H, q, J 9.7 Hz, H15), 4.87 (2H, s, H9), 3.79 (3H, s, H14); δ_c (101 MHz, CDCl₃): 158.8 (C=O), 156.6 (C2), 156.1 (C=O), 139.4 (C5/6), 135.2 (C10), 129.1 (*Ar*), 128.1 (Ar), 127.5 (*Ar*), 125.2 (q, J_{C-F} 276.0 Hz, C16), 121.6 (C5/6), 120.3 (C1), 110.8 (C4), 108.0 (C3), 56.1 (C14), 53.7 (q, J_{C-F} 32.4 Hz, C15), 43.8 (C9); δ_F (376 MHz, CDCl₃): -71.8 (3F, t, J 9.7 Hz); HRMS (ESI+): found 349.1164; C₁₈H₁₅F₃N₂O₂H, [M+H]⁺ requires 349.1159; v_{max} (neat): 3008.0, 2961.4, 2109.7, 1720.2, 1599.0, 1489.1, 1433.3, 1269.2.

3.2 Catalyst synthesis

3-((3,5-Bis(trifluoromethyl)phenyl)amino)-4-ethoxycyclobut-3-ene-1,2-dione (S5)

The reaction was carried out according to a literature procedure and the data obtained are consistent with those previously reported.¹⁷

To a stirred solution of diethyl squarate (1.36 mL, 9.20 mmol) and $Zn(OTf)_2$ (335 mg, 0.92 mmol, 0.1 eq.) in EtOH (36 mL) at RT, was added 3,5-bistrifluoromethylaniline (1.44 mL, 9.20 mmol, 1 eq.) dropwise *via* syringe. The mixture was left to stir at RT under a flow of argon until consumption of the starting material. After 48 h, the precipitate was filtered, washed with cold EtOH (2 mL), and dried under vacuum. The product (2.36 g, 73%) was obtained as a pale cream solid. δ_H (400 MHz, DMSO-d6): 11.2 (1H, s, H5), 8.04 (2H, s, H7), 7.79 (1H, s, H10), 4.81 (2H, q, *J* 7.1 Hz, H11), 1.42 (3H, t, *J* 7.1 Hz, H12); δ_c (101 MHz, DMSO-d6): 187.9 (C2/3), 184.9 (C2/3), 179.7 (C1/4), 169.6 (C1/4), 140.6 (C6), 131.1 (q, J_{C-F} 33.0 Hz, C8), 123.0 (q, J_{C-F} 272.9 Hz, C9), 119.9 (C7), 116.7 (C10), 70.5 (C11), 15.8 (C12); δ_F (376 MHz, DMSO-d6): -61.7 (6F, s).

(S)-Quinolin-4-yl((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methanamine (S6)

The reaction was carried out according to a literature procedure and the data obtained are consistent with those previously reported.¹⁸

To a solution of PPh₃ (579 mg, 2.21 mmol, 1.3 eq.) and cinchonidine (500 mg, 1.70 mmol, 1 eq.) in dry THF (10 mL) under argon at 0 °C, was added DIAD (434 μ L, 2.21 mmol, 1.3 eq.) in one portion. After 15 min, DPPA (475 μ L, 2.21 mmol, 1.3 eq.) was added dropwise over 15 min and the reaction mixture was heated to 45 °C. After 40 h, PPh₃ (624 mg, 2.38 mmol, 1.4 eq.) was added in one portion and stirred for a further 3 h. The reaction mixture was cooled to RT, diluted with H₂O (0.5 mL) and stirred for 3 h where-after the crude product was concentrated *in vacuo*. The yellow oil was dissolved in a mixture of DCM:HCl (10% aq. solution) (32 mL) and mixed thoroughly. The aqueous layer was removed and basified to pH 9-10 with *aq*. NH₄OH solution. Solution extracted with EtOAc (3x40 mL), organic layers dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude residue was purified by flash column chromatography (silica gel, EtOAc:MeOH:NH₄OH, 90:10:2) to afford the product (0.341 g, 68%) as a yellow oil.

 $δ_{H}$ (600 MHz, CDCl₃): 8.90 (1H, d, J 4.6 Hz, H12/13), 8.35 (1H, s, H14/17), 8.13 (1H, d, J 8.3 Hz, H14/17), 7.72 (1H, ddd, J 8.4, 6.9, 1.4 Hz, H15/16), 7.60 (1H, ddd, J 8.3, 7.1, 1.2 Hz, H15/16), 7.55-7.49 (1H, m, H12/13), 5.84-5.76 (1H, m, H9), 4.98 (2H, dd, J 20.9, 13.8 Hz, H10), 4.71 (1H, s, H8), 3.28 (1H, dd, J 13.8, 10.1 Hz, H1'), 3.24-3.17 (1H, m, H5'), 3.07 (1H, s, H7), 2.84-2.76 (2H, m, H1/5), 2.31-2.24 (1H, m, H2), 2.03 (2H, s, H20), 1.63-1.60 (1H, m, H3), 1.58-1.53 (2H, m, H4), 1.45-1.38 (1H, m, H6'), 0.75 (1H, dd, J 13.8, 7.5 Hz, H6); $δ_c$ (151 MHz, CDCl₃): 150.5 (C12/13), 148.8 (C8), 142.0 (C9), 132.2 (C12/13), 130.6 (C14/17), 129.1 (C15/16), 128.7 (C18/19), 128.6 (C18/19), 128.1 (C11), 126.6 (C15/16), 123.5 (C14/17), 119.7 (C12/13) 114.4 (C10), 62.2 (C7), 56.5 (C1), 41.1 (C5), 40.1 (C2) 28.3 (C4), 27.8 (C3), 26.3 (C6); [α]_D²⁰ +58.7 (*c* = 0.562, CHCl₃). Cinchonidine derived aryl-thiourea catalyst (C1)

This reaction was carried out according to a literature procedure, and the data obtained are consistent with those previously reported.¹⁹

A solution of 3,5-bis(trifluoromethyl)phenyl isothiocyanate (0.60 mL, 3.3 mmol, 1.11 eq.) in THF (6 mL) was added slowly to a solution of 9-amino(9-deoxy)epicinchonidine **S6** (870 mg, 2.96 mmol, 1.00 eq.) in THF (20 mL) at room temperature. The reaction mixture was stirred at room temperature for 24 h and evaporated *in vacuo*. The residue was purified by column chromatography on silica gel (10 g) using $CH_2CI_2/MeOH/Et_3N 100/2/1$ as eluent to afford an off-white solid (1.83 g, 99 %).

^{*} Signals at ~146 and ~56 ppm were visible as broad humps on the baseline but with insufficient signal:noise to determine precise chemical shift values.

3-((3,5-Bis(trifluoromethyl)phenyl)amino)-4-(((S)-quinolin-4-yl((1S,2S,4S,5R)-5-vinylquinuclidin-2yl)methyl)amino)cyclobut-3-ene-1,2-dione (C2)

This reaction was carried out according to a literature procedure, and the data obtained are consistent with those previously reported.²⁰

To a stirred solution of 3-((3,5-bis(trifluoromethyl)phenyl)amino)-4-ethoxycyclobut-3-ene-1,2-dione (370 mg, 1.05 mmol, 1.2 eq.) in dry MeOH (6 mL) under argon was added (*S*)-quinolin-4yl((1*S*,2*S*,4*S*,5*R*)-5-vinylquinuclidin-2-yl)methanamine (256 mg, 0.872 mmol, 1 eq.) in dry MeOH (4 mL) in one portion. The reaction mixture was stirred for 24 h under Ar at RT after which the precipitate was filtered under vacuum, washed with cold MeOH (2 mL) and dried to afford the product (0.222 g, 42%) as a white solid.

 δ_{H} (600 MHz, DMSO-d6): 10.25 (1H, s, H20/25), 8.98 (1H, d, J 4.4 Hz, H12/13), 8.47 (1H, d, J 8.0 Hz, *Ar*), 8.39 (1H, s, H20/25), 8.09 (1H, d, J 8.3 Hz, *Ar*), 7.98 (2H, s, H27), 7.81 (1H, t, J 7.7 Hz, *Ar*), 7.74 (1H, t, J 7.7 Hz, *Ar*), 7.70 (1H, d, J 4.6 Hz, H12/13), 7.65 (1H, s, H30), 6.06 (1H, s, H8), 5.99-5.88 (1H, m, H9), 4.99 (2H, dd, J 16.8, 10.3 Hz, H10), 3.34-3.37 (1H, m, H7), 3.30-3.18 (2H, m, H1'+5'), 2.71 (1H, d, J 13.3 Hz, H1), 2.69-2.61 (1H, m, H5), 2.28 (1H, s, H2), 1.62-1.55 (2H, m, H3+4'), 1.54-1.47 (1H, m, H4) 1.42-1.33 (1H, m, H6'), 0.73 (1H, s, H6); δ_{c} (151 MHz, DMSO-d6): 184.4 (C22/23), 180.3 (C22/23), 168.8, 162.7, 150.4 (C12/13), 148.1, 145.0 (*Ar*), 142.1 (C9), 140.9 (*Ar*), 131.2 (q, *J*_{C-F} 33.0 Hz, C28), 130.0 (*Ar*), 129.4 (*Ar*), 127.2 (*Ar*), 126.3 (*Ar*), 125.8 (*Ar*), 124.0 (*Ar*), 123.4 (*Ar*), 123.1 (q, *J*_{C-F} 273 Hz, C29), 120.4 (C12/13), 118.3 (C27), 114.9 (C30), 114.3 (C10), 59.5 (C7), 55.5 (C1), 40.6 (C5), 39.5 (C2)^{*}, 27.2 (C4), 25.7 (C6); δ_{F} (376 MHz, DMSO-d6): -61.7 (6F, s); [α]_D²⁰ -82.9 (*c* = 0.9, DMSO).

^{*} Carbon peak at C2 is obscured by the DMSO peak, but is visible in the HSQC spectrum

(S)-N-Benzhydryl-2-((2-((3,5-bis(trifluoomethyl)phenyl)amino)-3,4-dioxocyclobut-1-en-1-yl)amino)-N,3,3-trimethylbutanamide (C3)

The reaction was carried out according to a literature procedure and the data obtained are consistent with those previously reported.²¹

To a stirred solution of *N*-methylbenzhydrylamine (200 mg, 1.01 mmol, 1.1 eq.), HBTU (383 mg, 1.01 mmol, 1.1 eq.) and *N*-Boc-L-tert-leucine (213 mg, 0.918 mmol, 1 eq.) in dry DCM (15 mL) was added *i*-Pr₂NEt (191 μ L, 1.1 mmol, 1.2 eq.) dropwise. The reaction mixture was stirred at RT under Ar until completion. After 5 d, the reaction mixture was washed with 1M HCl (2x25 mL) and extracted with Et₂O (40 mL). The organic layers were washed with aq. NaHCO₃ (2x25 mL) and brine (2x25 mL), dried over MgSO₄, filtered, and concentrated *in vacuo*. HCl (4M in dioxane, 2.5 mL) was added dropwise to the amide at 0 °C, stirred for 2 h at RT and concentrated to produce the amine hydrochloride. DCM (8 mL) and Et₃N (0.4 mL, 2.75 mmol, 3 eq.) were added and stirred for 15 min before addition of 3-((3,5-Bis(trifluoromethyl)phenyl)amino)-4-ethoxycyclobut-3-ene-1,2-dione (325 mg, 0.918 mmol, 1 eq.) in one portion. The reaction mixture was stirred at RT for 48 h where after NaOH (1N, 8 mL) was added and stirred for a further 4 h at RT. Reaction mixture was diluted with DCM (12.5 mL) and H₂O (12.5 mL), washed with brine (15 mL), dried over MgSO₄, filtered and concentrated. The crude residue was purified by flash column chromatography (PhMe:EtOAc, 20:1) to afford the product (73.8 mg, 13%) as a white solid.

 $δ_H$ (400 MHz, CDCl₃, exists as ≈ 5:1 rotamers, resonance of major reported): 10.1 (1H, s, NH), 7.92-7.77 (2H, s, *Ar*), 7.54 (1H, s, NH), 7.39-7.32 (4H, m, *Ar*), 7.24-7.17 (5H, m, *Ar*), 7.00-6.93 (3H, m, *Ar*), 5.58-5.46 (1H, m, H12), 2.99 (3H, s, H16), 1.07 (9H, s, H14); $δ_C$ (101 MHz, CDCl₃): 171.4, 169.2, 161.8, 139.8, 138.1, 137.8, 137.2, 133.1 (q, *J_{C-F}* 34.0 Hz), 129.4, 129.0, 128.7, 128.5, 128.2, 122.8 (q, *J_{C-F}* 273 Hz), 118.9, 61.5, 60.4, 36.9, 33.4, 26.1;* $δ_F$ (376 MHz, CDCl₃): -62.9 (6F, s); [α]_D²⁰-48.2 (*c* = 0.28, CHCl₃).

^{*} Three ¹³C signals are not observed, likely due to co-incidence between diastereotopic groups (e.g. 21 and 21').

1,1'-((1R,2R)-1,2-Diphenylethane-1,2-diyl)bis(3-(3,5-bis(trifluoromethyl)phenyl)thiourea) (C4)

The reaction was carried out by analogy to a literature procedure and the data obtained are consistent with those previously reported.^{22,23}

Isothiocyanato-3,5-bistrifluoromethylbenzene (344 μ L, 1.88 mmol, 2 eq.) was added dropwise over 2 min to a stirred solution of (1*R*,2*R*)-DPEN (200 mg, 0.942 mmol, 1 eq.) in dry THF (2.5 mL) at 0 °C. The reaction mixture was heated to RT and stirred under a constant flow of argon. After 24 h the THF was removed *in vacuo*. The crude yellow residue was purified by flash column chromatography (silica gel, DCM:MeOH, 95:5) to afford the product (530 mg, 75%) as a white solid.

 $δ_{H}$ (400 MHz, DMSO-d6): 10.3 (2H, s, H6), 8.73 (2H, s, H8), 8.16 (4H, s, H4), 7.69 (2H, s, H1), 7.30 – 7.18 (10H, m, H11-13), 5.96 (2H, s, H9); $δ_{c}$ (101 MHz, DMSO-d6): 180.4 (C7), 141.5 (Ar), 138.4 (Ar), 130.2 (q, J_{C-F} 32.8 Hz, C2), 128.3 (Ar), 128.0 (Ar), 127.6 (Ar), 121.9 (C4), 121.7 (q, J_{C-F} 272.9 Hz, C3), 116.4 (C1), 62.6 (C9); $δ_{F}$ (376 MHz, DMSO-d6): -61.8 (s); $[α]_{P}^{20}$ - 39.9 (c = 0.8, CHCl₃).

N-((4S,5S)-4,5-Diphenylimidazolidin-2-ylidene)-3,5-bis(trifluoromethyl)aniline (C5)

To a stirred solution of (1R,2R)-DPEN (200 mg, 0.942 mmol, 1 eq.) in dry THF (1.5 mL) was added a solution of isothiocyanato-3,5-bistrifluoromethylbenzene (172 µL, 0.942 mmol, 1 eq.) in dry THF (1 mL) dropwise over 30 min at 0 °C *via* syringe pump. The reaction mixture is stirred at RT for 24 h where after the solvent was removed *in vacuo*. The crude yellow oil was purified by flash column chromatography (silica gel, Petrol:EtOAc:NEt₃, 20:1:0.01 \rightarrow 10:1:0.01) to afford the product (67.5 mg, 16%) as a white solid.

 $δ_{H}$ (400 MHz, DMSO-d6): 7.46 (2H, s, H7), 7.40-7.26 (13H, m, H1+4+10-12), 4.54 (2H, s, H8); $δ_{C}$ (101 MHz, DMSO-d6): 157.6 (C6), 141.9 (C5), 131.1 (q, J_{C-F} 32.0 Hz, C2), 129.0 (C10), 128.2 (Ar), 127.1 (Ar), 124.1 (q, J_{C-F} 273 Hz, C3), 112.6 (C1), 67.2 (C8), possible overlapping with two carbons as speaks is short one peak; $δ_{F}$ (376 MHz, DMSO-d6): -61.4 (6F, s); $[α]_{D}^{20}$ -72.2 (c = 0.266, CHCl₃); HRMS (ESI+): found 450.1334; C₂₃H₁₈F₆N₃, [M+H]⁺ requires 450.1327; $ν_{max}$ (neat): 3028.5, 2844.0, 1664.3, 1595.3, 1382.8, 1271.0, 1170.4, 1129.4, 698.9, 680.2.

3.3 Spirooxindole products

General procedure for the synthesis of spiro[pyrrolidine-oxindoles]

To a stirred solution of imine (**1a/1b**) (1 eq.) and benzylidene derivatives (1.2 eq.) in DCM (0.1 M) was added catalyst **C1** (0.1 eq.) in one portion. The reaction mixture was stirred under air at RT and monitored by TLC. Upon completion, the solvent was removed *in vacuo* and the crude residue was purified by flash column chromatography to afford the product.

A Note on Purification

In some instances, residual benzylidinemalononitriles present upon completion of the reaction underwent hydrolysis during silica gel chromatography leading to contamination of the product with the corresponding aldehydes. These were removed by dissolving the product in methanol (5 mL), transferring the solution to a separatory funnel, adding saturated aqueous sodium bisulfite (1 mL) and shaking for 30 seconds. The solution was then diluted with water (25 mL) and extracted with CHCl₃ (25 mL). The aqueous layer was then extracted three time with chloroform (5 mL). Following this the organic layers were combined, dried over MgSO₄, filtered under gravity, and then concentrated *in vacuo*. This procedure was adapted from Furigay *et al.*²⁴

A Note on Relative and Absolute Configuration

All spirocyclization reactions produced at least two diastereomeric products identifiable from the crude ¹H NMR spectra. In most cases these diastereomers were not separable by chromatography. The relative and absolute stereochemistry of the major diastereomers of all products are assumed to be analogous to the crystal structure obtained for (–)-**3d** (see the main text and section 6 below). With the exception of **3I** and **5b** (which contain an additional stereocentre not common to the other compounds synthesised), we assume the minor diastereomer to be consistent with the following analysis for **3k**.

The relative configuration of the minor diastereomer of **3k** was identified through NOESY analysis (Figure S1). In a mixture containing ~1:1 major:minor diastereomer, a strong nOe enhancement was observed between the *ortho*-CH of the oxindole (H3) and the benzylidene hydrogen (H13), consistent with the C(13)-H(13) and C(7)-C(5) bonds being *syn* relative to the pyrrolidine ring. The presence of strong enhancements between H¹⁵ and H¹¹ for both diastereomers indicates that the CF₃ and Ph groups are *anti* for both the major and minor diastereomers. It should be noted that the absolute stereochemistry of the minor diastereomer is not known.

Figure S1. NOESY analysis of spirocycle 3k (CDCl₃, 400 MHz, *t_{mix}* 0.3 s).

1-Benzyl-2-oxo-4'-phenyl-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3',3'-dicarbonitrile (3a)

1a (50 mg, 0.157 mmol, 1 eq.), **2a** (29.1 mg, 0.188 mmol, 1.2 eq.) and **C1** (8.9 mg, 0.016 mmol, 0.1 eq.) after 1 day afforded the spirocycle (71.3 mg, 96%, 91% ee, 12:1 d.r.) as a white foam solid. Crude was purified using 1% acetone in toluene. Yield of 250 mg scale, (366 mg, 96%, 90% ee, 6.7:1 d.r.).

Major δ_H (400 MHz, CDCl₃): 7.80 (1H, d, *J* 7.8 Hz, H3), 7.65-7.60 (2H, m, H19), 7.52-7.47 (3H, m, H20-21), 7.41-7.26 (6H, m, H1+11-13), 7.19 (1H, t, *J* 7.6 Hz, H2), 6.80 (1H, d, *J* 7.9 Hz, H4), 5.52 (1H, d, *J* 10.8 Hz, H17), 5.22 (1H, d, *J* 15.5 Hz, H9'), 4.85-4.76 (1H, m, H15), 4.69 (1H, d, *J* 15.6 Hz, H9), 2.90 (1H, d, *J* 7.5 Hz, H14); Major δ_C (101 MHz, CDCl₃): 173.5 (C8), 143.8 (C10), 134.6 (*Ar*), 132.5 (C1), 130.3 (*Ar*), 129.6 (*Ar*), 129.5 (C18), 129.2 (*Ar*), 129.1 (*Ar*), 128.2 (*Ar*), 127.7 (*Ar*), 125.1 (C3), 124.0 (C2), 122.1 (*Ar*), 111.4 (C23'), 111.3 (C23), 110.6 (C4), 70.7 (C7), 60.1 (q, *J*_{C-F} 32.2 Hz, C15), 51.8 (C17), 51.6 (C22), 44.8 (C9);* Major δ_F (376 MHz, CDCl₃): -73.5 (3F, d, *J* 6.2 Hz); [α]_D²⁰ -34.8 (*c* = 0.94, CHCl₃); HRMS (ESI+): found 473.1589; C₂₇H₁₉F₃N₄OH, [M+H]⁺ requires 473.1584; *v*_{max} (neat): 3371.4, 1709.0, 1612.1, 1287.8, 1140.6, 1094.0, 751.1, 695.1; HPLC: Chiral art Amylose-SA (with column guard), 15% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 19.8 min, t_R (minor) = 10.5 min.

^{*} **C16** not observed due to low signal intensity.

1-Benzyl-4'-(4-methoxyphenyl)-2-oxo-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3',3'dicarbonitrile (3b)

1a (50 mg, 0.157 mmol, 1 eq.), **2b** (46 mg, 0.187 mmol, 1.2 eq.) and **C1** (9 mg, 0.0159 mmol, 0.1 eq.) after 3 days afforded the spirocycle (77 mg, 98%, 93% ee, 2.8:1 d.r.) as a white foam solid. Crude was purified using 0.5% acetone in toluene.

Major *δ_H* (400 MHz, CDCl₃):^{*} 7.79 (1H, d, *J* 7.7 Hz, **H3**), 7.54 (2H, d, *J* 8.7 Hz, *Ar*), 7.41-7.31 (6H, m, **H1+11-13**), 7.18 (1H, t, *J* 7.7 Hz, **H2**), 7.01 (2H, d, *J* 8.8 Hz, *Ar*), 6.79 (1H, d, *J* 7.9 Hz, **H4**), 5.47 (1H, d, *J* 10.8 Hz, **H17**), 5.21 (1H, d, *J* 15.7 Hz, **H9'**), 4.78-4.71 (1H, m, **H15**), 4.68 (1H, d, *J* 15.6 Hz, **H9**), 3.84 (3H, s, **H24**), 2.87 (1H, m, **H14**); **Minor** *δ_H* (400 MHz, CDCl₃):⁺⁺ 7.69 (1H, d, *J* 7.6 Hz, **H3**), 7.56 (2H, m, *Ar*), 7.41-7.31 (6H, m, **H1+11-13**), 7.22 (1H, d, *J* 7.5 Hz, **H2**), 6.99 (2H, d, *J* 9.0 Hz, *Ar*), 6.83 (1H, d, 7.8 Hz, **H4**), 5.12 (1H, d, *J* 15.8 Hz, **H9'**), 5.06-4.96 (1H, m, **H15**), 4.82 (1H, d, *J* 15.6 Hz, **H9**), 4.43 (1H, d, *J* 10.0 Hz, **H17**), 3.83 (3H, s, **H24**), 3.13 (1H, m, **H14**); **Major** *δ_c* (101 MHz, CDCl₃): 173.6 (**C8**), 161.0 (**C21**), 143.8 (*Ar*), 134.6 (**C10**), 132.5 (*Ar*), 130.3 (*Ar*), 129.1 (*Ar*), 128.2 (*Ar*), 127.7 (*Ar*), 125.1 (**C3**), 124.0 (**C2**), 122.3 (*Ar*) 121.3 (*Ar*), 114.9 (*Ar*), 111.6 (**C23'**), 111.5 (**C23**), 110.5 (**C4**), 70.4 (**C7**), 60.2 (q, *J_{CF}* 32.2 Hz, **C15**), 55.5 (**C24**), 51.8 (**C22**), 51.4 (**C17**), 44.8 (**C9**);⁺ **Major** *δ_F* (376 MHz, CDCl₃): -73.4 (3F, d, *J* 5.9 Hz), **Minor** *δ_F* (376 MHz, CDCl₃): -73.3 (3F, d, *J* 6.0 Hz); [**α**]_D²⁰ -28.6 (*c* = 1.06, CHCl₃); **HRMS** (ESI+): found 503.1695; C₂₈H₂₁F₃N₄O₂H, [M+H]⁺ requires 503.1690; *v*_{max} (neat): 3358.3, 1718.3, 1610.2, 1513.3, 1256.1, 1177.8, 1140.6, 752.9, 697.0; **HPLC**: Chiral art Amylose-SA (with column guard), 15% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 19.3 min, t_R = (minor) 13.7 min.

^{*} Due to significant overlapping in the aromatic region, integration of certain multiplets was inaccurate although where possible, assignment was made *via* 2D analysis.

⁺ **C16** not observed due to low signal intensity.

1-Benzyl-4'-(4-nitrophenyl)-2-oxo-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3',3'dicarbonitrile (3c)

1a (51 mg, 0.160 mmol, 1 eq.), **2c** (38 mg, 0.192 mmol, 1.2 eq.) and **C1** (9 mg, 0.0159 mmol, 0.1 eq.) after 2 days afforded the spirocycle (63 mg, 76%, 97% ee, 48.8:1 d.r.) as a faint-orange foam solid. Crude was purified using 1% acetone in toluene.

Major δ_{H} (400 MHz, CDCl₃): 8.37 (2H, d, *J* 8.8 Hz, *Ar*), 7.82 (2H, d, *J* 8.8 Hz, *Ar*), 7.80 (1H, d, *J* 7.6 Hz, H3), 7.43-7.27 (6H, m, H1 + H11-13), 7.20 (1H, t, *J* 7.7 Hz, H2), 6.83 (1H, d, *J* 7.9 Hz, H4), 5.66 (1H, d, *J* 10.7 Hz, H17), 5.21 (1H, d, *J* 15.6 Hz, H9'), 4.90-4.80 (1H, m, H15), 4.71 (1H, d, *J* 15.6 Hz, H9), 2.97 (1H, d, *J* 7.6 Hz, H14); Major δ_{c} (101 MHz, CDCl₃)*: 173.3 (C8), 149.2 (C21), 143.8 (*Ar*), 136.6 (C18), 134.3 (*Ar*), 132.8 (*Ar*), 130.3 (*Ar*), 129.2 (*Ar*), 128.3 (*Ar*), 127.7 (*Ar*), 125.1 (C3), 124.6 (*Ar*), 124.2 (C2), 121.5 (*Ar*), 111.0 (C23'), 110.9 (C23), 110.8 (C4), 70.8 (C7), 60.2 (q, *J*_{C-F} 32.8 Hz, C15), 51.1 (C17 & C22[†]), 44.8 (C9);[‡] Major δ_{F} (376 MHz, CDCl₃): -73.5 (3F, d, *J* 6.1 Hz); [α]_D²⁰ -42.5 (*c* = 1.00, CHCl₃); HRMS (ESI+): found 503.1440; C₂₇H₁₈F₃N₅O₃H, [M+H]⁺ requires 518.1435; *v*_{max} (neat): 3352.7, 1720.2, 1608.3, 1522.6, 1345.5, 1284.4, 1140.6; HPLC: Chiral art Amylose-SB (with column guard), 20% IPA-hexane 1.0 mL/min, $\lambda = 254$ nm, t_R (major) = 15.0 min, t_R (minor) = 12.8 min.

^{*} No peak visible corresponding to **C22** likely due to co-incidence with another peak.

⁺ As indicated by HMBC and HSQC spectra.

[‡] **C16** not observed due to low signal intensity.

1-Benzyl-4'-(naphthalen-2-yl)-2-oxo-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3',3'dicarbonitrile (3d)

1a (50 mg, 0.158 mmol, 1 eq.), **2d** (38 mg, 0.187 mmol, 1.2 eq.) and **C1** (9 mg, 0.0160 mmol, 0.1 eq.) after 1 day afforded the spirocycle (78 mg, 95%, 87% ee, 10.1:1 d.r.) as a white foam solid. Crude was purified using 1% acetone in toluene.

Major δ_H (400 MHz, CDCl₃): 8.13 (1H, s, H25), 7.99 (1H, d, J 8.7 Hz, *Ar*), 7.96-7.87 (2H, m, *Ar*), 7.83 (1H, d, J 7.6 Hz, H3), 7.72 (1H, d, J 8.5, *Ar*), 7.59-7.54 (2H, m, *Ar*), 7.44-7.29 (6H, m, H1+11-13), 7.20 (1H, t, J 7.8 Hz, H2), 6.81 (1H, d, J 7.9 Hz, H4), 5.72 (1H, d, J 10.7 Hz, H17), 5.25 (1H, d, J 15.7 Hz, H9), 5.00-4.92 (1H, m, H15), 4.71 (1H, d, J 15.6 Hz, H9'), 2.98 (1H, d, J 7.5 Hz, H14); Major δ_c (101 MHz, CDCl₃): 173.6 (C8), 143.8 (*Ar*), 134.6 (*Ar*), 134.1 (*Ar*), 133.4 (*Ar*), 132.6 (*Ar*), 129.4 (*Ar*), 129.1 (*Ar*), 128.8 (*Ar*), 128.5 (*Ar*), 128.2 (*Ar*), 127.7 (*Ar*), 127.4 (*Ar*), 127.0 (*Ar*_q), 126.9 (*Ar*), 125.4 (*Ar*), 125.1 (C3), 124.0 (C2), 122.1 (*Ar*_q), 111.5 (C29'), 111.4 (C29), 110.6 (C4), 70.8 (C7), 60.2 (q, *J*_{C-F} 31.7 Hz, C15), 52.0 (C17), 51.6 (C28), 44.8 (C9);* Major δ_F (376 MHz, CDCl₃): -73.4 (3F, d, *J* 5.8 Hz); [α]_D²⁰ -19.8 (*c* = 0.95, CHCl₃); HRMS (ESI+): found 523.1746; C₃₁H₂₁F₃N₄OH, [M+H]⁺ requires 523.1740; *v*_{max} (neat): 3360.2, 1710.8, 1612.1, 1468.6, 1366.1, 1285.9, 1138.7; HPLC: Chiral art Amylose-SB (with column guard), 20% IPA-hexane 1.0 mL/min, $\lambda = 254$ nm, t_R (major) = 11.8 min, t_R (minor) = 9.4 min.

^{*} **C16** not observed due to low signal intensity.

1-benzyl-2-oxo-4'-(o-tolyl)-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3',3'-dicarbonitrile (3e)

1a (51.3 mg, 0.161 mmol, 1 eq.), **3e** (33.0 mg, 0.196 mmol, 1.2 eq.) and Catalyst **C1** (9 mg,0.0159 mmol, 0.1 eq.) after 2 days afforded the spirocycle **(**72.0 mg, 92 %, 83% ee, 4.0:1 d.r.) as a white solid. Crude was purified using 1% acetone in toluene.

Major δ_H (600 MHz, CDCl₃): 7.83 (1H, d, *J* 7.6 Hz, H3), 7.74-7.71 (1H, m, *Ar*), 7.39-7.31 (9H, m, *Ar* + H1), 7.19 (1H, t, *J* 7.6 Hz, H2) 6.78 (1H, d, *J* 7.8 Hz, H4), 6.14 (1H, d, *J* 10.8 Hz, H17), 5.21 (1H, d, *J* 15.8 Hz, H9'), 4.72 (1H, d, *J* 15.8 Hz, H9), 4.70-4.64 (1H, m, H15), 2.88 (1H, d, *J* 7.4 Hz, H14), 2.64 (3H, s, H20); Major δ_c (151 MHz, CDCl₃): 173.7 (C8), 143.9 (*Ar*), 139.1 (*Ar*), 134.6 (*Ar*), 132.5 (*Ar*), 131.8 (*Ar*), 129.8 (*Ar*), 129.1 (*Ar*), 128.2 (*Ar*), 127.9 (*Ar*), 127.6 (*Ar*), 127.4 (*Ar*), 126.8 (*Ar*), 125.2 (C3), 124.0 (C2), 122.2 (*Ar*), 111.7 (C26 & C26'), 110.6 (C24), 71.0 (C22), 61.3 (q, *J*_{C-F} 32.1 Hz, C15), 50.2 (C25), 46.1 (C7), 44.8 (C9), 20.0 (C20);^{*} Major δ_F (564 MHz, CDCl₃): -73.7 (3F, d, *J* 6.2 Hz); [α]_D²⁰ -6.4 (*c* = 1.07, CHCl₃); HRMS (ESI+): found 487.1746; C₂₈H₂₁F₃N₄OH, [M+H]⁺ requires 487.1734; *v*_{max} (thin film): 3362.1, 1722.0, 1610.2, 1490.9, 1367.9, 1282.2, 1144.3, HPLC: Chiral art Amylose-SA (with column guard), 20% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 11.3 min, t_R (minor) = 6.6 min.

^{*} **C16** not observed due to low signal intensity.

1-Benzyl-4'-(2-bromophenyl)-2-oxo-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3',3'dicarbonitrile (3f)

1a (76 mg, 0.239 mmol, 1 eq.), **2f** (67 mg, 0.300 mmol, 1.2 eq.) and **C1** (14 mg, 0.0248 mmol, 0.1 eq.) after 3 days afforded the spirocycle (113 mg, 86%, 80% ee, 9.9:1 d.r.) as a white foam solid. Crude was purified using 1% acetone in toluene.

Major δ_{H} (600 MHz, CDCl₃): 7.82 (1H, d, *J* 8.0 Hz, **H3**), 7.78 (1H, dd, *J* 8.0, 1.2 Hz *Ar*), 7.76 (1H, dd, *J* 8.0, 1.2 Hz, *Ar*), 7.48 (1H, td, *J* 7.5, 1.2 Hz, *Ar*), 7.41-7.32 (6H, m, H1+ *Ar*), 7.28 (1H, m, *Ar*), 7.19 (1H, td, *J* 7.7, 0.7 Hz, H2), 6.78 (1H, d, *J* 7.9 Hz, H4), 6.56 (1H, d, *J* 10.8 Hz, H17), 5.22 (1H, d, *J* 15.7 Hz, H9'), 4.74 (1H, d, *J* 15.7 Hz, H9), 4.68-4.62 (1H, m, H15), 2.89 (1H, d, *J* 7.5 Hz, H14); **Major** δ_c (151 MHz, CDCl₃): 173.3 (C8), 144.0 (*Ar*), 134.6 (*Ar*), 134.4 (*Ar*), 132.6 (*Ar*), 131.4 (*Ar*), 129.5 (*Ar*), 129.2 (*Ar*), 129.1 (*Ar*), 128.2 (*Ar*), 128.1 (*Ar*), 127.7 (*Ar*), 127.2 (C10), 125.1 (C3), 123.9 (C2), 121.9 (*Ar*), 111.6 (C25'), 110.9 (C25), 110.7 (C4), 71.1 (C7), 61.5 (q, *J*_{CF} 32.1 Hz, C15), 50.0 (C24), 48.7 (C17), 44.8 (C9);^{*} Major δ_F (564 MHz, CDCl₃): -73.6 (d, *J* 6.1 Hz); [α]_D²⁰ +15.6 (*c* = 1.01, CHCl₃); HRMS (ESI+): found 589.0242; C₂₇H₁₈BrF₃N₄OK, [M+K]⁺ requires 589.0246; *v*_{max} (neat): 3350.9, 1718.3, 1612.1, 1470.4, 1282.2, 1172.2, 1142.4; HPLC: Chiral art Amylose-SA (with column guard), 20% IPA-hexane 1.0 mL/min, $\lambda = 254$ nm, t_R (major) = 13.7 min, t_R (minor) = 9.9 min.

^{*} **C16** not observed due to low signal intensity.

1-Benzyl-4'-(4-chlorophenyl)-2-oxo-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3',3'dicarbonitrile (3g)

1a (102 mg, 0.321 mmol, 1 eq.), **2g** (73 mg, 0.384 mmol, 1.2 eq.) and **C1** (19 mg, 0.0337 mmol, 0.1 eq.) after 1 day afforded the spirocycle (147 mg, 90%, 93% ee, 8.6:1 d.r.) as a white foam solid. Crude was purified using 1% acetone in toluene.

Major δ_H (400 MHz, CDCl₃): 7.79 (1H, d, J 7.8 Hz, H3), 7.58-7.54 (2H, m, *Ar*), 7.51-7.47 (2H, m, *Ar*), 7.41-7.32 (6H, m, H1, H11-13), 7.19 (1H, td, J 7.9, 1.0 Hz, H2), 6.81 (1H, d, J 7.9 Hz, H4), 5.50 (1H, d, J 10.7 Hz, H17), 5.21 (1H, d, J 15.5 Hz, H9'), 4.78-4.72 (1H, m, H15), 4.69 (1H, d, J 15.7 Hz, H9), 2.89 (1H, d, J 7.6 Hz, H14); Major δ_c (101 MHz, CDCl₃): 173.4 (C8), 143.8 (*Ar*), 136.5 (C21), 134.5 (C10), 132.6 (*Ar*), 130.4 (*Ar*), 129.8 (*Ar*), 129.2 (*Ar*), 128.3 (*Ar*), 128.1 (C18), 127.7 (*Ar*), 125.1 (C3), 124.1 (C2), 121.9 (*Ar*), 111.3 (C23'), 111.2 (C23), 110.7 (C4), 70.6 (C7), 60.1 (q, J_{C-F} 32.6 Hz, C15), 51.4 (C22), 51.2 (C17), 44.8 (C9);* Major δ_F (376 MHz, CDCl₃): -73.4 (3F, d, J 6.1 Hz); [α]_D²⁰ -37.2 (*c* = 0.98, CHCl₃); HRMS (ESI+): found 545.0747; C₂₇H₁₈ClF₃N₄OK, [M+K]⁺ requires 545.0758; *v*_{max} (neat): 3363.9, 1710.8, 1612.1, 1490.9, 1280.3, 1140.6, 1094.0; HPLC: Chiral art Amylose-SA (with column guard), 15% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 18.7 min, t_R (minor) = 16.7 min.

^{*} **C16** not observed due to low signal intensity.

1-Benzyl-2-oxo-5'-(trifluoromethyl)-4'-(3,4,5-trimethoxyphenyl)spiro[indoline-3,2'-pyrrolidine]-3',3'dicarbonitrile (3h)

1a (51 mg, 0.160 mmol, 1 eq.), **2h** (47 mg, 0.192 mmol, 1.2 eq.) and **C1** (9 mg, 0.0160 mmol, 0.1 eq.) after 3 days afforded the spirocycle (75 mg, 84%, 92% ee, 7.3:1 d.r.) as a white foam solid. Crude was purified using 1% acetone in toluene.

Major δ_{H} (400 MHz, CDCl₃): 7.79 (1H, d, J 7.9 Hz, H3), 7.41-7.31 (6H, m, H1+H11-13), 7.20 (1H, t, J 7.7, H2), 6.81 (3H, m, H4+H19), 5.43 (1H, d, J 10.8 Hz, H17), 5.23 (1H, d, J 15.7 Hz, H9'), 4.79-4.71 (1H, m, H15), 4.68 (1H, d, J 15.6 Hz, H9), 3.92 (6H, s, H22), 3.90 (3H, s, H23), 2.89 (1H, d, J 7.6 Hz, H14); Major δ_{c} (101 MHz, CDCl₃): 173.6 (C8), 153.8 (*Ar*), 143.8 (*Ar*), 139.5 (*Ar*), 134.5 (*Ar*), 132.6 (*Ar*), 129.2 (*Ar*), 128.3 (*Ar*), 127.7 (*Ar*), 125.1 (C3), 124.8 (*Ar*), 124.1 (C2), 122.1 (*Ar*), 111.7 (C25'), 111.6 (C25), 110.7 (C4), 106.2 (C19), 70.7 (C7), 61.1 (C23), 60.3 (q, *J*_{C-F} 31.9 Hz, C15), 56.5 (C22), 52.3 (C17), 51.6 (C24), 44.8 (C9);^{*} Major δ_{F} (376 MHz, CDCl₃): -73.5 (3F, d, *J* 6.1 Hz); [α]_D²⁰ -36.7 (*c* = 0.98, CHCl₃); HRMS (ESI+): found 601.1465; C₃₀H₂₃F₃N₄O₄K, [M+K]⁺ requires 601.1460; *v*_{max} (neat): 3326.6, 2931.6, 1710.8, 1593.4, 1464.8, 1284.1, 1250.5, 1125.7; HPLC: Chiral art Amylose-SA (with column guard), 15% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 20.7 min, t_R (minor) = 9.9 min.

^{*} **C16** not observed due to low signal intensity.

1-Benzyl-4'-(furan-2-yl)-2-oxo-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3',3'-dicarbonitrile (3i)

1a (50.6mg, 0.159 mmol, 1 eq.), **2i** (27.6 mg, 0.192 mmol, 1.2 eq.) and **C1** (9 mg, 0.0194 mmol, 0.1 eq.) after 1 day afforded the spirocycle (55 mg, 75 %, 91% ee, 16:1 d.r.) as a yellow solid. Crude was purified using 1% acetone in toluene.

Major δ_H (600 MHz, CDCl₃): 7.79 (1H, d, *J* 7.8 Hz, H3), 7.56 (1H, d, *J* 1.5 Hz, *Ar*), 7.40-7.27 (6H, m, H1 + H11-13), 7.18 (1H, t, *J* 7.7 Hz, H2), 6.79 (1H, d, *J* 7.7 Hz, H4), 6.68 (1H, d, *J* 3.4 Hz, H19), 6.48 (1H, dd, *J* 3.3, 1.9 Hz, H20), 5.62 (1H, d, *J* 10.7 Hz, H17), 5.19 (1H, d, *J* 15.7 Hz, H9'), 4.87-4.80 (1H, m, H15), 4.69 (1H, d, *J* 15.7 Hz, H9), 2.94 (1H, d, *J* 7.9 Hz, H14); Major δ_C (151 MHz, CDCl₃): 173.4 (C8), 144.7 (*Ar*), 143.9 (*C10*), 143.8 (*C18*), 134.5 (*Ar*), 132.6 (*Ar*), 129.1 (*Ar*), 128.2 (*Ar*), 127.7 (*Ar*), 125.1 (C3), 124.0 (C2), 121.7 (*Ar*), 111.9 (*Ar*), 111.3 (C23'), 111.3 (C20), 111.2 (C23), 110.6 (C4), 70.6 (C7), 59.8 (q, *J*_{C-F} 32.3 Hz, C15), 49.6 (C22), 46.6 (C17), 44.7 (C9);^{*} Major δ_F (564 MHz, CDCl₃): -74.0 (3F, d, *J* 5.6 Hz); [α]_D²⁰ -43.2 (*c* = 1.02, CHCl₃); HRMS (ESI+): found 463.1382; C₂₅H₁₇F₃N₄O₂H, [M+H]⁺ requires 463.1377; *v*_{max} (thin film): 3358.3, 2228.9, 1718.3, 1610.2, 1490.9, 1371.7, 1289.7, 1140.6; HPLC: Chiral art Amylose-SA (with column guard), 15% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 19.2 min, t_R (minor) 9.2 min.

^{*} **C16** not observed due to low signal intensity.

(E)-1-benzyl-2-oxo-4'-styryl-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3',3'-dicarbonitrile (3j)

1a (50.0 mg, 0.157 mmol, 1 eq.), **2j** (34.0 mg, 0.189 mmol, 1.2 eq.) and **C1** (9 mg, 0.0159 mmol, 0.1 eq.) after 3 days afforded the spirocycle (52 mg, 67 %, 94% ee, 11.5:1 d.r.) as a yellow solid. Crude was purified using 1% acetone in toluene.

Major δ_H (600 MHz, CDCl₃): 7.77 (1H, d, *J* 7.6 Hz, H3), 7.51-7.47 (2H, m, *Ar*), 7.41-7.30 (9H, m, *Ar*+H1), 7.18 (1H, t, *J* 7.7 Hz, H2), 7.02 (1H, d, *J* 15.8 Hz, H19), 6.79 (1H, d, *J* 7.7 Hz, H4), 6.30 (1H, dd, *J* 15.8, 9.3 Hz, H18), 5.20 (1H, d, *J* 15.8 Hz, H9'), 5.01 (1H, t, *J* 9.9 Hz, H17), 4.67 (1H, d, *J* 15.7 Hz, H9), 4.36-4.26 (1H, m, H15), 2.18 (1H, d, *J* 7.8 Hz, H14); Major δ_c (151 MHz, CDCl₃): 173.5 (C8), 143.8 (*Ar*), 140.2 (C19), 135.4 (*Ar*), 134.6 (*Ar*), 132.5 (*Ar*), 129.2 (*Ar*), 129.1 (*Ar*), 128.9 (*Ar*), 128.2 (*Ar*), 127.7 (*Ar*), 127.3 (*Ar*), 125.0 (C3), 124.0 (C2), 122.0 (*Ar*), 118.0 (C18), 114.4 (C25), 113.3 (C25), 110.6 (C4), 70.5 (C7), 62.0 (q, *J*_{C-F} 31.6 Hz, C15), 51.0 (C22), 50.2 (C17), 44.8 (C9);^{*} Major δ_F (564 MHz, CDCl₃): -74.0 (3F, d, J 6.5); [α] $_0^{20}$ -19.8 (*c* = 0.5, CHCl₃); HRMS (ESI+): found 499.1746; C₂₉H₂₁F₃N₄OH, [M+H]⁺ requires 499.1740; v_{max} (thin film): 3362.1, 2228.9, 1722.0, 1610.2, 1490.9, 1289.7, 1170.4, 1144.3; HPLC: Chiral art Amylose-SA (with column guard), 15% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 15.3 min, t_R (minor) = 8.8 min.

^{*} **C16** not observed due to low signal intensity.
1-Methyl-2-oxo-4'-phenyl-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3',3'-dicarbonitrile (3k)

1b (50 mg, 0.206 mmol, 1 eq.), **2a** (38 mg, 0.248 mmol, 1.2 eq.) and **C1** (12 mg, 0.0206 mmol, 0.1 eq.) after 3 days afforded the spirocycle (63 mg, 77%, 85% ee, 2.0:1 d.r.) as a cream coloured glassy solid residue. Crude was purified using 1% acetone in toluene.

Major δ_{H} (400 MHz, CDCl₃): 7.79 (1H, d, *J* 7.7 Hz, H3), 7.61-7.57 (2H, m, H15), 7.53-7.46 (4H, m, H1+16+17), 7.22 (1H, td, *J* 7.8, 1.1 Hz, H2), 6.93 (1H, d, *J* 7.8 Hz, H4), 5.44 (1H, d, *J* 10.7 Hz, H13), 4.84-4.74 (1H, m, H11), 3.27 (3H, s, H9), 2.98 (1H, d, *J* 7.5 Hz, H10); Minor δ_{H} (400 MHz, CDCl₃):^{*} 7.69 (1H, d, *J* 7.6 Hz, H3), 7.61-7.57 (m, *Ar*), 7.53-7.46 (m, *Ar*), 7.28 (1H, dd, *J* 7.8 Hz, 1.0 Hz, H2), 6.97 (1H, d, *J* 7.8 Hz, H4), 5.07-4.98 (1H, m, H11), 4.45 (1H, d, *J* 10.3 Hz, H13), 3.29 (3H, s, H9), 3.32-3.17 (1H, m, H10); Major δ_{c} (101 MHz, CDCl₃):^{*} 173.4 (C8), 144.5 (*Ar*). 132.6 (C1), 130.2 (*Ar*), 129.5 (*Ar*), 129.0 (*Ar*), 125.0 (C3), 124.0 (C2), 122.0 (Ar), 111.3 (C19'), 111.2 (C19), 109.5 (C4), 70.9 (C7), 60.1 (q, *J*_{CF} 31.3 Hz, C11), 51.7 (C13), 51.6 (C18), 26.8 (C9);^{*} Minor δ_{c} (101 MHz, CDCl₃): 173.3 (C8), 143.3 (*Ar*), 132.6 (*Ar*), 132.1 (*Ar*), 130.3 (*Ar*), 130.1 (*Ar*), 129.5 (*Ar*), 129.3 (*Ar*), 126.1 (*Ar*) 125.6 (*Ar*), 124.2 (*Ar*), 112.5 (C19'), 110.4 (C19), 109.6 (C4), 72.3 (C7), 61.2 (q, *J*_{CF} 32.4 Hz, C11), 55.5 (C13), 51.5 (C18), 27.3 (C9); Major δ_{F} (376 MHz, CDCl₃): -73.5 (3F, d, *J* 6.1 Hz); Minor δ_{F} (376 MHz, CDCl₃): -74.3 (3F, d, *J* 5.9 Hz); Sole Major diastereomer [α]_D²⁰ -71.4 (*c* = 1.01, CHCl₃); Mix of diastereomers [α]_D²⁰ -25.5 (*c* = 1.01, CHCl₃); HRMS (ESI+): found 397.1276; C₂₁H₁₅F₃N₄OH, [M+H]⁺ requires 397.1271; v_{max} (thin film): 3365.8, 2926.0, 1718.3, 1613.9, 1289.7, 1170.4, 1140.6; HPLC: Chiral art Amylose-SA (with column guard), 15% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 13.3 min, t_R (minor) = 8.7 min.

^{*} Due to significant overlapping in the aromatic region, integration of certain multiplets was inaccurate and therefore excluded although where possible, assignment was made *via* 2D analysis.

[†] A small amount of the major diastereomer was able to separated whilst the other fraction contained both diastereomers, therefore assignment was made by subtracting the peaks not present in the major diastereomer spectra

⁺ C14 and C16 not observed due to low signal intensity.

Ethyl-1-benzyl-3'-cyano-2-oxo-4'-phenyl-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3'-carboxylate (3l)

Major diastereomer

1a (50 mg, 0.157 mmol, 1 eq.), **2l** (38 mg, 0.189 mmol, 1.2 eq.) and **C1** (9 mg, 0.0160 mmol, 0.1 eq.) after 3 days afforded the spirocycle (78 mg, 95%, 94% ee, 1.8:1:0.05 or 1:0.41:0.02)^{*} as a yellow solid. Crude was purified using $0.5 \rightarrow 1\%$ acetone in toluene.

Major *δ_H* (400 MHz, CDCl₃):[†] 7.91 (1H, dd, *J* 7.6 Hz, 0.8 Hz, **H3**), 7.65 (m, *A*r), 7.41-7.27 (m, *A*r), 7.17 (1H, td, *J* 7.6, 0.9 Hz, **H2**), 6.80 (1H, d, *J* 7.9 Hz, **H4**), 5.43 (1H, d, *J* 10.9 Hz, **H17**), 5.07 (1H, d, *J* 15.6 Hz, **H9'**), 4.76-4.66 (1H, m, **H15**), 4.61 (1H, d, *J* 15.4 Hz, **H9**), 3.79 (1H, dq, *J* 10.7, 7.1 Hz, **H24'**), 3.68 (1H, dq, *J* 10.7, 7.1 Hz, **H24**), 2.79 (1H, d, *J* 8.0 Hz, **H14**), 0.72 (3H, t, *J* 7.2 Hz, **H25**); **Minor** *δ_H* (400 MHz, CDCl₃):[‡] 7.78 (1H, d, *J* 7.5 Hz, **H3**), 7.41-7.27 (m, *Ar*), 7.09 (1H, td, *J* 7.8, 0.9 Hz, **H2**), 6.78 (1H, m, **H4**), 5.17 (1H, d, *J* 15.6 Hz, **H9'**), 4.89-4.81 (1H, m, **H15**), 4.76-4.66 (2H, m, **H9+H17**), 3.66-3.55 (2H, m, **H24**), 2.79 (1H, d, *J* 8.2 Hz, **H14**), 0.56 (3H, t, *J* 7.2 Hz, **H25**); *δ_C*(101 MHz, CDCl₃):[§] 174.5 (**C8**, **Min**), 174.3 (**C8**, **Maj**), 163.4 (**C23**, **Min**), 162.5 (**C23**, **Maj**), 143.8, 142.6, 135.5, 135.0, 132.2, 132.1, 131.4, 130.8, 130.0, 129.9, 129.2, 129.1, 129.0, 128.8, 128.7, 128.2, 128.1, 128.0, 127.4, 125.8, 125.0, 124.6, 123.5, 123.4, 115.2, 114.1, 109.7, 109.4, 72.3(**C7**, **Min**), 70.0 (**C7**, **Maj**), 63.7 (**C22**, **Min**), 63.5 (**C22**, **Maj**), 63.3 (**C24**, **Min**), 63.2 (**C24**, **Maj**), 62.7 (q, *J_{C+F}* 30.4 Hz, **C15**, **Min**), 61.8 (q, *J_{C+F}* 31.3 Hz, **C15**, **Maj**), 51.2 (**C17**, **Min**), 49.0 (**C17**, **Maj**), 44.9 (**C9**, **Min**), 44.5 (**C9**, **Maj**), 13.4 (**C25**, **Maj**), 13.2 (**C25**, **Min**); ^{**} **Major** *δ_F* (376 MHz, CDCl₃): -73.4 (3F, d, *J* 6.4 Hz); **Minor** *δ_F* (376 MHz, CDCl₃): -74.4 (3F, d, *J* 6.0 Hz); **[α]_D²⁰ -42.1** (*c* = 1.02, CHCl₃); **HRMS** (ESI+): found 558.1405; C₂₉H₂₄F₃N₃O₃K, [M+K]⁺ requires 558.1402; *v*_{max} (neat): 3330.4,

^{*} A further minor diastereomer can observed in the crude NMR.

[†] Due to significant overlapping in the aromatic region, integration of certain multiplets was inaccurate and therefore excluded although where possible, assignment was made *via* 2D analysis.

⁺ H17 peak is absent in minor due to being buried in 4.76-4.66 multiplet, observed *via* 2D analysis

[§] Due to the small d.r. complete assignment of the individual diastereomer carbon peaks are not given, but assignment of certain peaks has been given where possible via 2D NMR.

^{**} **C16** not observed due to low signal intensity.

1720.2, 1237.5, 1164.8, 1136.8, 752.9, 697.0; **HPLC:** Chiral art Amylose-SA (with column guard), 15% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 18.9 min, t_R (minor) = 9.8 min.

The relative and absolute configuration of the major diastereomer (-)-**3I**_{maj} was determined by single crystal x-ray diffraction (see section 6.2 below).

1-Benzyl-2-oxo-4'-phenyl-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3',3'-dicarbonitrile (3m)

1c (50 mg, 0.142 mmol, 1 eq.), **2a** (26.2 mg, 0.170 mmol, 1.2 eq.) and **C1** (8.0 mg, 0.014 mmol, 0.1 eq.) after 1 day afforded the spirocycle (66.8 mg, 93%, 89% ee, 2.3:1 d.r.) as a pink foam solid. Crude was purified using 0.5% acetone in toluene.

Major δ_H (600 MHz, CDCl₃):^{*} 7.72 (1H, d, J 8.2 Hz, H3), 7.63-7.58 (m, Ar), 7.51-7.47 (m, Ar), 7.40-7.34 (5H, m, H11-13), 7.16 (1H, dd, J 8.1, 1.8 Hz, H2), 6.80 (1H, d, J 1.8 Hz, H4), 5.46 (1H, d, J 10.7 Hz, H17), 5.19 (1H, d, J 15.7 Hz, H9'), 4.82-4.76 (1H, m, H15), 4.66 (1H, d, J 15.7 Hz, H9), 2.87 (1H, d, J 7.3 Hz, H14); Minor δ_H (600 MHz, CDCl₃): 7.63-7.58 (m, H3 + Ar), 7.33-7.29 (5H, m, H11-13), 7.20 (1H, dd, J 8.1, 1.9 Hz, H2), 6.83 (1H, d, J 1.7 Hz, H4), 5.11 (1H, d, J 15.7 Hz, H9'), 5.09-5.04 (1H, m, H15), 4.77 (1H, d, J 15.5 Hz, H9), 4.40 (1H, d, J 10.1 Hz, H17), 3.10 (1H, d, J 6.5 Hz, H14); Major δ_c (151 MHz, CDCl₃):^{+,+} 173.7 (C8 Min), 173.4 (C8, Maj), 145.0 (C5/6, Maj), 143.8 (C5/6, Min), 138.8 (C1, Maj), 138.2 (C1, Min), 134.8, 134.0, 133.8, 130.9, 130.4, 130.3, 130.1, 129.8, 129.6, 129.5, 129.42, 129.37, 129.34, 129.29, 129.0, 128.6, 128.5, 127.7, 127.5, 126.9, 126.2 (C3, Maj), 124.2 (C2, Min), 124.0 (C2, Maj), 120.4 (C5/6, Maj), 111.28 (C4, Min), 111.24 (C23, Maj), 111.23 (C4, Maj), 110.4 (C23, Min), 72.0 (C7, Min), 70.4 (C7, Maj), 61.3 (q, J_{C-F} 30.0 Hz, C15, Min), 60.0 (q, J_{C-F} 32.1 Hz, C15, Maj), 55.7 (C22, Min), 51.7 (C22, Maj), 45.0 (C9, Min), 44.9 (C9, Maj); Major δ_F (564 MHz, CDCl₃): -73.5 (3F, d, J 6.0 Hz); Minor **δ**_F (564 MHz, CDCl₃): -74.1 (3F, d, *J* 5.7 Hz); $[\alpha]_{D}^{20}$ -33.2 (*c* = 1.00, CHCl₃); **HRMS** (ESI+): found 507.1199; C₂₇H₁₈ClF₃N₄OH, [M+H]⁺ requires 507.1193; *v*_{max} (film): 3339.7, 2922.2, 2253.2, 1720.2, 1608.3, 1490.9, 1284.1, 1142.4; HPLC: Chiral ART Amylose-SB (with column guard), 20% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 13.1 min, t_R (minor) = 7.6 min.

^{*} Due to significant overlapping of major and minor diastereomers in the aromatic region, integration of certain multiplets was inaccurate and therefore omitted. Where possible, assignment was made *via* 2D analysis.

[†] Due to the low d.r. complete assignment of the individual diastereomer carbon peaks are not given, but assignment of certain peaks has been given where possible via 2D NMR.

⁺ **C16** not observed due to low signal intensity.

1-Benzyl-5-methoxy-2-oxo-4'-phenyl-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3',3'dicarbonitrile (**3n**)

1d (50 mg, 0.144 mmol, 1 eq.), **2a** (26.6 mg, 0.172 mmol, 1.2 eq.) and **C1** (8.1 mg, 0.014 mmol, 0.1 eq.) after 1 day afforded the spirocycle (70.8 mg, 98%, 93% ee, 8.2:1 d.r.) as a white foam solid. Crude was purified using 0.5% acetone in toluene.

Major δ_H (600 MHz, CDCl₃): 7.63-7.60 (2H, m, H20/21/22), 7.51-7.47 (3H, m, H20/21/22), 7.40 (1H, d, *J* 2.5 Hz, H3), 7.39-7.37 (2H, m, H11/12), 7.36-7.32 (2H, m, H11/12), 7.31-7.28 (1H, m, H13), 6.68 (1H, dd, *J* 8.7, 2.5 Hz, H1), 6.69 (1H, d, *J* 8.6 Hz, H4), 5.53 (1H, d, *J* 10.7 Hz, H18), 5.20 (1H, d, *J* 15.6 Hz, H9'), 4.85-4.77 (1H, m, H16), 4.66 (1H, d, *J* 15.6 Hz, H9), 3.79 (3H, s, H14), 2.90 (1H, dd, *J* 7.3, 2.8 Hz, H15); Major δ_c (151 MHz, CDCl₃):^{*} 173.4 (C8), 156.8 (C2), 136.9 (C5/6), 134.7 (C10), 130.3 (C19), 129.6 (C20/21/22), 129.5 (C20/21/22), 129.1 (*Ar*), 129.0 (C20/21/22), 128.2 (*Ar*), 127.7 (*Ar*), 123.2 (C5/6), 117.3 (C1), 112.1 (C3), 111.5 (C24'), 111.4 (C24), 111.2 (C4), 71.0 (C7), 60.1 (q, *J*_{C-F} 32.4 Hz, C16), 56.1 (C14), 51.8 (C18), 51.7 (C23), 44.9 (C9); Major δ_F (564 MHz, CDCl₃): -7.41 (3F, d, *J* 6.0 Hz); [α]₀²⁰ -8.5 (*c* = 1.05, CHCl₃); HRMS (ESI+): found 503.1695; C₂₈H₂₁F₃N₄O₂H, [M+H]⁺ requires 503.1690; *v*_{max} (film): 3363.9, 2924.1, 1994.1, 1716.4, 1455.5, 1284.1, 1144.3; HPLC: Chiral ART Amylose-SA (with column guard), 15% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 32.2 min, t_R (mior) = 10.1 min.

^{*} **C16** not observed due to low signal intensity.

1-benzyl-2-oxo-4'-phenethyl-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3',3'-dicarbonitrile (**30**)

1a (50.0 mg, 0.157 mmol, 1 eq.), **2o** (34.5 mg, 0.190 mmol, 1.2 eq.) and **C1** (9 mg, 0.0157 mmol, 0.1 eq.) after 1 day afforded the spirocycle (71 mg, 90 %, 73% ee, >100:1 d.r.) as a yellow foam solid. Crude was purified using 0.5% acetone in toluene.

Major δ_H (600 MHz, CDCl₃): 7.74 (1H, d, J 7.6 Hz, H3), 7.38-7.31 (7H, m, H1 + *Ar*), 7.30-7.22 (4H, m, *Ar*), 7.17 (1H, td, J 7.7, 0.8 Hz, H2), 6.77 (1H, d, J 7.9 Hz, H4), 5.15 (1H, d, J 15.7 Hz, H9'), 4.67 (1H, d, J 15.7 Hz, H9), 4.35 (1H, td, J 10.2, 3.7 Hz, H17), 4.03-3.97 (1H, m, H15), 3.05 (1H, td, J 13.5, 5.3 Hz, H18'), 2.95-2.89 (1H, m, H18), 2.74 (1H, d, J 7.6 Hz, H14), 2.44-2.37 (1H, m, H19'), 2.32- 2.25 (1H, m, H19); Major δ_c (151 MHz, CDCl₃):* 173.4 (C8), 144.0 (C5/6), 140.1 (*Ar*), 134.6 (*Ar*), 132.5 (C1), 129.1 (*Ar*), 128.9 (*Ar*), 128.4 (*Ar*), 128.2 (*Ar*), 127.7 (*Ar*), 126.7 (*Ar*), 125.0 (C3), 123.9 (C2), 122.1 (C5/6), 112.6 (C25'), 111.2 (C25), 110.6 (C4), 71.2 (C7), 63.3 (q, *J*_{C-F} 32.1 Hz, C15), 48.4 (C24), 46.8 (C17), 44.7 (C9), 33.8 (C18), 32.2 (C19); Major δ_F (564 MHz, CDCl₃): -72.9 (3F, d, *J* 6.7 Hz); [α]_D²⁰ -17.1 (*c* = 1.06, CHCl₃); HRMS (ESI+): found 501.1899; C₂₉H₂₃F₃N₄OH, [M+H]⁺ requires 501.1897; *v*_{max} (film): 3352.7, 2924.1, 2251.3, 1712.7, 1612.1, 1470.4, 1284.1, 1133.1; HPLC: Chiral ART Amylose-SA (with column guard), 20% IPA-hexane 1.0 mL/min, $\lambda = 254$ nm, t_R (major) = 12.6 min, t_R (minor) = 7.5 min.

^{*} **C16** not observed due to low signal intensity.

1"-Benzyl-4'-phenyl-5'-(trifluoromethyl)dispiro[indene-2,3'-pyrrolidine-2',3"-indoline]-1,2"(3H)- dione (5a)

1a (100 mg, 0.315 mmol, 1 eq.), 4a (90.6 mg, 0.387 mmol, 1.2 eq.) and C1 (18 mg, 0.0319 mmol, 0.1 eq.) after 1 day afforded the spirocycle (133 mg, 77 %, 85% ee, 23.0:1 d.r.) as a sandy-coloured solid. Crude was purified using 1:1 DCM:hexane; → 100 % DCM.

Major δ_H (600 MHz, CDCl₃): 7.69-7.64 (1H, m, Indanone), 7.62-7.58 (1H, m Indanone), 7.56-7.51 (2H, m, Indanone), 7.34 (4H, m, *Ar*), 7.27 (3H, m, *Ar*), 7.18 (1H, d, *J* 7.8 Hz, H3), 7.18 (2H, d, *J* 7.3, *Ar*), 7.07-7.04 (1H, m, *Ar*), 6.97 (1H, t, *J* 7.8 Hz, H1), 6.77 (1H, t, *J* 7.6 Hz, H2), 6.44 (1H, d, *J* 7.9 Hz, H4), 5.50 (1H, d, *J* 10.6 Hz, H17), 5.37-5.30 (1H, m, H15), 5.28 (1H, d, *J* 13.2 Hz, H9'), 4.42 (1H, d, *J* 15.5 Hz, H9), 3.19 (1H, d, *J* 8.7 Hz, H14); Major δ_c (151 MHz, CDCl₃): 198.7 (C8), 195.4 (C=O), 175.5 (C=O), 143.8 (*Ar*), 142.6 (*Ar*), 141.9 (*Ar*), 136.1 (*Ar*), 136.0 (*Ar*), 135.8 (*Ar*), 132.8 (*Ar*), 130.6 (C1), 129.1 (*Ar*), 128.8 (*Ar*), 128.6 (*Ar*), 128.1 (*Ar*), 127.9 (*Ar*), 127.8 (*Ar*), 124.9 (C3), 123.7 (*Ar*), 123.1 (*Ar*), 123.0 (*Ar*), 122.4 (C2), 109.5 (C4), 71.2 (C7), 71.0 (C22), 61.3 (q, *J*_{C-F} 31.0 Hz, C15), 49.7 (C17), 44.5 (C9); * Major δ_F (564 MHz, CDCl₃): -78.4 (3F, d, *J* 7.0 Hz); $[\alpha]_P^{20}$ -146.9 (*c* = 1.06, CHCl₃); HRMS (ESI+): found 553.1722; C_{33H23}F₃N₂O₃H, [M+H]⁺ requires 553.1734; *v*_{max} (thin film): 3365.8, 2929.7, 2255.0, 1740.7, 1699.7, 1610.2, 1490.9, 1349.3, 1259.8, 1133.1; HPLC: Chiral ART Amylose-SA (with column guard), 35% CHCl₃-hexane 1.0 mL/min, $\lambda = 254$ nm, t_R (major) = 10.7 min, t_R (minor) = 5.4 min.

^{*} **C16** not observed due to low signal intensity.

1"-Benzyl-4'-phenyl-5'-(trifluoromethyl)dispiro[indene-2,3'-pyrrolidine-2',3"-indoline]-1,2",3-trione (5b)

1a (100 mg, 0.314 mmol, 1 eq.), **4b** (83mg, 0.337 mmol, 1.2 eq.) and **C1** (18 mg, 0.0314 mmol, 0.1 eq.) after 4 days afforded the spirocycle (90 mg, 53 %, 8.0:1 d.r.) as a pale yellow solid. Crude was purified using 1% acetone in toluene.

Major δ_{H} (600 MHz, CDCl₃): 7.45 (1H, d, *J* 7.6 Hz, H3),7.40-7.30 (6H, m, *Ar*), 7.29-7.26 (2H, m, indanone), 7.23-7.16 (3H, m, *Ar*), 7.14 (1H, t, *J* 7.3 Hz, *Ar*) 6.97 (2H, m, indanone), 6.90 (1H, t, *J* 7.7 Hz, H1), 6.80 (1H, t, *J* 7.3 Hz, H2), 6.31 (1H, d, *J* 7.8 Hz, H4), 5.44 (1H, d, *J* 10.9 Hz, H17), 5.22 (1H, d, *J* 15.3 Hz, H9'), 4.74 (1H, m, H15), 4.27 (1H, d, *J* 15.5 Hz, H9), 3.48 (1H, d, *J* 16.5 Hz, H30'), 3.10 (1H, d, *J* 16.4 Hz, H30), 2.75 (1H, s, H14); Major δ_c (151 MHz, CDCl₃): 201.3 (C23), 177.5 (C8), 151.2 (*Ar*), 143.9 (C10), 136.3 (*Ar*), 135.8 (*Ar*), 134.8 (*Ar*), 134.5 (C10), 130.0 (*Ar*), 129.5 (C1), 128.8 (*Ar*), 128.5 (*Ar*), 127.9 (*Ar*), 127.7 (*Ar*), 127.2 (*Ar*), 126.3 (*Ar*), 125.6 (*Ar*), 125.1 (*Ar*), 124.4 (C3), 123.6 (*Ar*), 121.7 (C2), 109.1 (C4), 73.5 (C7), 68.5 (C22), 60.6 (q, *J*_{CF} 30.7 Hz, C15), 47.7 (C17), 44.6 (C9), 31.4 (C30);^{*} Major δ_F (564 MHz, CDCl₃): -72.4 (3F, d, J 6.5 Hz); [α]_D²⁰ -71.4 (*c* = 1.01, CHCl₃). HRMS (ESI+): found 539.1933; C₃₃H₂₅F₃N₂O₂H, [M+H] ⁺ requires 539.1941; v_{max} (thin film): 3339.7, 2922.2, 2251.3, 1718.3, 1606.5, 1349.3, 1278.5, 1136.8.

The enantiomeric composition of this material could not be determined since we were unable to produce a racemic standard of the required diastereoisomer. All attempts to do so (DBU, NEt₃/Schreiner's catalyst, and an achiral cinchona-thiourea surrogate catalyst derived from 4-(2-aminoethyl)morpholine and 3,5-bis(trifluoromethyl)phenyl isothiocyanate) gave an insufficient quantity of (±)-**5b** to allow identification of enantiomers by HPLC.

^{*} **C16** not observed due to low signal intensity.

Its relative configuration was determined by NOESY analysis (Figure S2), and assuming the relative configuration of the 3 non-indanone stereocentres are identical to **5a**.

Figure S2. NOESY analysis of indanone **5b** (CDCl₃, 600 MHz, *t_{mix}* 0.3 s). Key stereochemically consequential nOe signals are indicated.

4 HPLC data

1-Benzyl-2-oxo-4'-phenyl-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3',3'-dicarbonitrile (3a)

Conditions: Chiral ART Amylose-SA (with column guard), 15% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 19.8 min, t_R (minor) = 10.5 min.

50 mg scale asymmetric trace: 92% ee

Single Injection Report

Data file:	WR 2.144.dx		
Sequence Name:	SingleSample	Project Name:	WR
Sample name:	WR 2.144	Operator:	SYSTEM
Instrument:	1100HPLC	Injection date:	2021-05-03 12:15:33+01:00
Inj. volume:	25.000	Location:	3
Acq. method:	15% IPA-HEX 30 mins.amx	Туре:	Sample
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount:	0.00
Manually modified:	Manual Integration		

Signal: DAD1A,Sig=254,4 Ref=360,100						
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
10.505	VB	1.10	172.76	6.39	3.94	
19.780	BB	3.44	4209.27	86.43	96.06	
		Sum	4382.03			

Conditions: Chiral art Amylose-SA (with column guard), 15% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 18.4 min, t_R (minor) = 9.9 min.

250 mg scale asymmetric trace: 90% ee

-					
RT [min]	Туре	Width [min]	Area	Height	Area%
9.865	MM m	0.38	176.80	6.91	5.15
18.393	BM m	0.66	3253.69	74.06	94.85
		Sum	3430.49		

Single Injection	Report		Agilent Technologies
Data file:	WR 2.139 Vial 1.dx		
Sequence Name:	SingleSample	Project Name:	WR
Sample name:	WR 2.139 Vial 1	Operator:	SYSTEM
Instrument:	1100HPLC	Injection date:	2021-03-25 16:20:05+00:00
inj. volume:	25.000	Location:	1
Acq. method:	15% IPA-HEX 30 mins.amx	Туре:	Sample
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount:	0.00
Manually modified:	Manual Integration		
DAD1A,Sig=254,4 Ref=36		5 16 17 18 19 20 efmini	21 22 23 24 25 26 27 28 29 30

Signal:	DAD1A,Si	g=254,4 Ref=360,100				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
10.099	BV	1.65	1972.49	74.25	50.00	
18.706	BB	3.46	1972.24	42.35	50.00	
		Sum	3944,73			

1-Benzyl-4'-(4-methoxyphenyl)-2-oxo-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3',3'dicarbonitrile (3b)

Conditions: Chiral art Amylose-SA (with column guard), 15% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 19.3 min, t_R (minor) = 13.7 min.

Asymmetric trace: 93% ee

Single Injectior	n Report		Agilent Technologies
Data file:	WR 2.139 Vial2 (CAD-1-39 rac) re-i	un.dx	
Sequence Name:	SingleSample	Project Name:	WR
Sample name:	WR 2.139 Vial2 (CAD-1-39 rac) re-run	Operator:	SYSTEM
Instrument:	1100HPLC	Injection date:	2021-03-30 13:18:00+01:00
lnj. volume:	25.000	Location:	5
Acq. method:	15% IPA-HEX 30 mins.amx	Туре:	Sample
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount:	0.00
Manually modified:	Manual Integration		
DAD1A.Sig=254,4 Ref=36	0.100		

Signal: DAD1A,Sig=254,4 Ref=360,100						
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
13.213	BB	2.68	1794.29	47.27	49.54	
18.846	BB	3.49	1827.90	33.43	50.46	
		Sum	3622.19			

1-Benzyl-4'-(4-nitrophenyl)-2-oxo-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3',3'dicarbonitrile (3c)

Conditions: Chiral art Amylose-SB (with column guard), 20% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 15.0 min, t_R (minor) = 12.8 min.

Asymmetric trace: 97% ee

Single Injection Report

Data file:	WR 2.167 (20% IPA-Hex, SB).dx				
Sequence Name:	SingleSample	Project Name:	WR		
Sample name:	WR 2.167 (20% IPA-Hex, SB)	Operator:	SYSTEM		
Instrument:	1100HPLC	Injection date:	2021-06-03 14:30:28+01:00		
lnj. volume:	25.000	Location:	22		
Acq. method:	20% IPA-HEX 30 mins.amx	Туре:	Sample		
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount:	0.00		
Manually modified:	Manual Integration				

Signal:	DAD1A,Sig	g=254,4 Ref=360,1	00			
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
12.766	VB	1.69	1157.03	39.28	1.38	
15.034	BB	6.77	82564.95	1879.89	98.62	
		Sum	83721.98			

Single Injection	Report		Agilent Technologies
Data file:	PCK 3.74 TLC 20% SB repeat20210	312 152812.dx	
Sequence Name:	SingleSample	Project Name:	JS
Sample name:	PCK 3.74 TLC 20% SB repeat	Operator:	SYSTEM
Instrument:	1100HPLC	Injection date:	2021-03-12 15:31:56+00:00
Inj. volume:	25.000	Location:	24
Acq. method:	20% IPA-hexane 60 mins 35C.amx	Туре:	Sample
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount:	0.00
Manually modified:	Manual Integration		
DAD1A,Sig=250,4 Ref=off	3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5	9 9.5 10 10.5 11 11.5 1	2 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5
0.5 1 1.5 2 2.5 5	5.5	e [min]	2 12.0 10 10.0 14 14.0 10 10.0 10 10.0 17 17.0

Signal:	DAD1A,Sig	g=250,4 Ref=off				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
12.996	BV	1.12	737.90	31.27	51.93	
13.771	VB	1.92	683.00	21.73	48.07	
		Sum	1420.90			

1-Benzyl-4'-(naphthalen-2-yl)-2-oxo-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3',3'dicarbonitrile (3d)

Conditions: Chiral art Amylose-SB (with column guard), 20% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 11.8 min, t_R (minor) = 9.4 min.

Asymmetric trace: 87% ee

Sum

17383.46

Single Injectior	n Report		Agilent Technologies
Data file:	WR 2.164 RAC (20% IPA-Hex, SB).d	x	
Sequence Name:	SingleSample	Project Name:	WR
Sample name:	WR 2.164 RAC (20% IPA-Hex, SB)	Operator:	SYSTEM
Instrument:	1100HPLC	Injection date:	2021-06-03 15:23:09+01:00
lnj. volume:	25.000	Location:	10
Acq. method:	20% IPA-HEX 30 mins.amx	Туре:	Sample
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount:	0.00
Manually modified:	Manual Integration		
DAD1A,Sig=254,4 Ref=34	50,100 4 5 6 7 8 9 10 Time	11 12 13 14	

Signal:	DAD1A,Sig	g=254,4 Ref=360,10	D			
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
9.316	MM m	0.28	3658.89	199.58	50.75	
11.847	MM m	0.39	3551.20	139.15	49.25	
		Sum	7210 10			

1-benzyl-2-oxo-4'-(o-tolyl)-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3',3'-dicarbonitrile (3e)

Conditions: Chiral art Amylose-SA (with column guard), 20% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 11.3 min, t_R (minor) = 6.6 min.

Asymmetric trace: 83% ee

Single Injection	n Report		Agilent Technologies
Data file:	WR 2.160 RAC (Run 1).dx		
Sequence Name:	SingleSample	Project Name:	WR
Sample name:	WR 2.160 RAC (Run 1)	Operator:	SYSTEM
Instrument:	1100HPLC	Injection date:	2021-05-07 15:25:04+01:00
lnj. volume:	25.000	Location:	1
Acq. method:	20% IPA-HEX 30 mins.amx	Туре:	Sample
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount:	0.00
Manually modified:	Manual Integration		

Signal:	DAD1A,Si	g=254,4 Ref=360,10				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
6.647	MM m	0.29	4813.79	254.30	50.42	
11.302	MM m	0.42	4733.64	177.40	49.58	
		Sum	9547.43			

1-Benzyl-4'-(2-bromophenyl)-2-oxo-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3',3'dicarbonitrile (3f)

Conditions: Chiral art Amylose-SA (with column guard), 20% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 13.7 min, t_R (minor) = 9.9 min.

Asymmetric trace: 80% ee

RT [min]	Туре	Width [min]	Area	Height	Area%	Name
9.692	BV	1.57	3561.01	141.36	48.00	
14,793	BB	2.93	3857.83	105.14	52.00	
		Sum	7418.85			

1-Benzyl-4'-(4-chlorophenyl)-2-oxo-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3',3'dicarbonitrile (3g)

Conditions: Chiral art Amylose-SA (with column guard), 15% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 18.7 min, t_R (minor) = 16.7 min.

Asymmetric trace: 93% ee

4668.42

Sum

Single Injection	Report		Agilent Technologies	
Data file:	WR 2.139 Vial 3.dx			
Sequence Name:	SingleSample	Project Name:	WR	
Sample name:	WR 2.139 Vial 3	Operator:	SYSTEM	
Instrument:	1100HPLC	Injection date:	2021-03-25 17:32:50+00:00	
lnj. volume:	25.000	Location:	3	
Aca. method:	15% IPA-HEX 30 mins.amx	Type:	Sample	
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount: 0.00		
Manually modified:	Manual Integration			
DAD1A,Sig=254,4 Ref=360	7 8 9 10 11 12 13 14 15 16 17 Time	18 19 20 21 22 23 24 [min]	4 25 26 27 28 29 30 31 32 33 34 35	

						•
Name	Area%	Height	Area	Width [min]	Туре	RT [min]
	45.32	65.13	3966.36	2.15	BV	16.008
	54.68	86.46	4784.74	3.64	VB	18.514
			8751.10	Sum		

1-Benzyl-2-oxo-5'-(trifluoromethyl)-4'-(3,4,5-trimethoxyphenyl)spiro[indoline-3,2'-pyrrolidine]-3',3'dicarbonitrile (3h)

Conditions: Chiral art Amylose-SA (with column guard), 15% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 20.7 min, t_R (minor) = 9.9 min.

Asymmetric trace: 92% ee

Single Injectio	n Report		Agilent Technologies
Data file:	CAD-1-46 RAC (15% IPA, 10 uL, S	A).dx	
Sequence Name:	SingleSample	Project Name:	WR
Sample name:	CAD-1-46 RAC (15% IPA, 10 uL, SA)	Operator:	SYSTEM
Instrument:	1100HPLC	Injection date:	2021-05-06 11:07:52+01:00
lnj. volume:	10.000	Location:	3
Acq. method:	15% IPA-HEX 30 mins 10 micro L.amx	Туре:	Sample
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount:	0.00
Manually modified:	Manual Integration		

Signal:	DAD1A,Sig	j=254,4 Ref=360,100					
RT [min]	Туре	Width [min]	Area	Height	Area%	N	lame
9.498	MM m	0.40	3118.86	118.84	49.50		
20.212	BB	4.65	3181.88	56.57	50.50		
		Sum	6300.74				

1-benzyl-4'-(furan-2-yl)-2-oxo-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3',3'-dicarbonitrile (3i)

Conditions: Chiral art Amylose-SA (with column guard), 15% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 19.2 min, t_R (minor) = 9.2 min.

Asymmetric trace: 91% ee

1599.65

Sum

10-0--

Single Injectior	ı Report		Agilent Technologies	
Data file:	WR 2.161 Rac (22-06) Run 3.dx			
Sequence Name:	SingleSample	Project Name:	WR	
Sample name:	WR 2.161 Rac (22-06) Run 3	Operator:	SYSTEM	
Instrument:	1100HPLC	Injection date:	2021-06-22 12:29:08+01:00	
lnj. volume:	25.000	Location:	41	
Acq. method:	15% IPA-HEX 30 mins.amx	Туре:	Sample	
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount:	0.00	
Manually modified:	Manual Integration			
DAD1A,Sig=254,4 Ref=36	0,100			
70-	9.710 9.710			
60-				
50-		18.63		
₽ 40-		- Ň		
30				
20-				

Signal:	DAD1A,Si					
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
9.210	BV	1.26	1852.09	72.88	50.03	
18.637	BB	2.80	1849.70	43.65	49.97	
		Sum	3701.79			

8

5 6 7

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time[min] (E)-1-benzyl-2-oxo-4'-styryl-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3',3'-dicarbonitrile (3j)

Conditions: Chiral art Amylose-SA (with column guard), 15% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 15.3 min, t_R (minor) = 8.8 min.

Asymmetric trace: 94% ee

Single Injection	on Report		Agilent Technologies	
Data file:	WR 2.162 Rac.dx			
Sequence Name:	SingleSample	Project Name:	WR	
Sample name:	WR 2.162 Rac	Operator:	SYSTEM	
Instrument:	1100HPLC	Injection date:	2021-06-18 14:37:00+01:00	
lnj. volume:	25.000	Location:	42	
Acq. method:	15% IPA-HEX 30 mins.amx	Туре:	Sample	
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount:	0.00	
Manually modified:	Manual Integration			
DAD1A,Sig=254,4 Ref=	360,100			

Signal:	DAD1A,Sig	j=254,4 Ref=360,100)			
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
8.786	MM m	0.42	103.95	3.73	52.88	
15.330	BB	1.49	92.63	2.50	47.12	
		Sum	196.58			

1-Methyl-2-oxo-4'-phenyl-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3',3'-dicarbonitrile (3k)

Conditions: Chiral art Amylose-SA (with column guard), 15% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 13.3 min, t_R (minor) = 8.7 min.

Asymmetric trace: 85% ee

Single Injection	ו Report		Agilent Technologies		
Data file:	WR 2.168 RAC (15% IPA,Hex, SA).	dx			
Sequence Name:	SingleSample	Project Name:	WR		
Sample name:	WR 2.168 RAC (15% IPA,Hex, SA)	Operator:	SYSTEM		
Instrument:	1100HPLC	Injection date:	2021-06-04 12:08:52+01:00		
lnj. volume:	25.000	Location:	3		
Acq. method:	15% IPA-HEX 30 mins.amx	Туре:	Sample		
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount:	0.00		
Manually modified:	Manual Integration				
DAD1A,Sig=254,4 Ref=34	50,100	13 14 15 16 17 e [min]	18 19 20 21 22 23 24 25		

Signal:	DAD1A,Sig	g=254,4 Ref=360,10	00			
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
8.834	BV	1.70	1566.70	58.11	50.28	
14.517	BV	3.27	1549.17	42.16	49.72	
		Sum	3115 87			

Ethyl-1-benzyl-3'-cyano-2-oxo-4'-phenyl-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3'- carboxylate (*3l*)

Conditions: Chiral art Amylose-SA (with column guard), 15% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 18.9 min, t_R (minor) = 9.8 min.

Asymmetric trace: 94% ee

Signal: DAD1A,Sig=254,4 Ref=360,100						
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
9.799	MM m	0.38	400.76	16.13	3.10	
18.901	BB	3.83	12516.69	282.80	96.90	
		Sum	12917.46			

Single Inject	tion Report			Agilent Technologie
Data file:	WR 2.139 Via	al 6 repeat (CAD 1-45	rac).dx	
Sequence Name:	SingleSample	e	Project Name:	WR
Sample name:	WR 2.139 Via rac)	al 6 repeat (CAD 1-45	Operator:	SYSTEM
Instrument:	nent: 1100HPLC Injection date:		Injection date:	2021-03-30 15:15:07+01:00
Inj. volume:	25.000	25.000		7
Acq. method:	15% IPA-HE	X 30 mins.amx	Туре:	Sample
Processing method:	3D UV Quantitative_	DefaultMethod.pmx	Sample amount:	t: 0.00
Manually modified:	Manual Integ	ration		
DAD1A,Sig=254,4 F	Ref=360,100			
325 30 27.5 25 22.5 20 21.5 20 20 21.5 20 20 21.5 25 20 20 20 20 20 20 20 20 20 20			15 16 17 18 19 2 me [min]	20 21 22 23 24 25 26 27 28 29 30
Signal: DAD1A,S	ig=254,4 Ref=360,1	00		
RT [min] Type	Width [min]	Area	Height Area	a% Name
9.790 BB	1.78	864.98	31.38 50.1	.16
18.474 BB	2.42	859.41	19.90 49.8	.84
	Sum	1724.40		
1-Benzyl-2-oxo-4'-phenyl-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3',3'-dicarbonitrile (3m)

Conditions: Chiral ART Amylose-SB (with column guard), 20% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 13.1 min, t_R (minor) = 7.6 min.

Asymmetric trace: 89% ee

orginal.	DAD IA, OI	g-204,4 Mci-000, M	00					
RT [min]	Туре	Width [min]	Area	Height	Area%	Name		
7.628	VB	0.91	519.38	27.92	5.36			
13.103	MM m	0.60	9162.92	214.79	94.64			
		Sum	9682.31					

Racemic trace

Single Injection	Report		Agilent Technologies
Data file:	WR 2.226 RAC V2 (20% IPA-Hexane, SB, 2	25 ul).dx	
Sequence Name:	SingleSample Proje	ect Name:	WR
Sample name:	WR 2.226 RAC V2 (20% IPA- Hexane, SB, 25 ul) Oper	ator:	SYSTEM
Instrument:	1100HPLC Injec	tion date:	2021-10-11 12:05:56+01:00
lnj. volume:	25.000 Loca	tion:	11
Acq. method:	20% IPA-HEX 30 mins.amx Type		Sample
Processing method:	3D UV Sam Quantitative_DefaultMethod.pmx	ple amount:	0.00
Manually modified: DAD1A,Sig=254,4 Ref=360	Manual Integration		
16- 14- 12- 10- 8- 6- 4- 2- 0- 1 2 3 4 5	6 7 8 9 10 11 12 13 14 15 16 Time [min]	17 18 19 20 :	21 22 23 24 25 26 27 28 29 30

Signal:	DAD1A,Si	g=254,4 Ref=360,100				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
7.803	MM m	0.29	308.86	16.55	51.74	
13.962	BB	2.59	288.11	6.48	48.26	
		Sum	596.97			

1-benzyl-5-methoxy-2-oxo-4'-phenyl-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3',3'dicarbonitrile (3n)

Conditions: Chiral ART Amylose-SA (with column guard), 15% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 32.2 min, t_R (minor) = 10.1 min.

Asymmetric trace: 93% ee

Signal:	DAD1A,Sig	g=254,4 Ref=360,1				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
10.073	BV	2.27	865.03	27.39	3.67	
32.163	VB	5.72	22691.00	287.16	96.33	
		Sum	23556.03			

Racemic trace

Single Injectio	n Report		Agilent Technologies
Data file:	WR 2.231 RAC V2 (15% IPA-Hex	ane, SA, 25 ul).dx	
Sequence Name:	SingleSample	Project Name:	WR
Sample name:	WR 2.231 RAC V2 (15% IPA- Hexane, SA, 25 ul)	Operator:	SYSTEM
Instrument:	1100HPLC	Injection date:	2021-10-13 15:21:21+01:00
lnj. volume:	25.000	Location:	22
Acq. method:	15% IPA-HEX 45 mins.amx	Туре:	Sample
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount:	0.00
Manually modified:	Manual Integration		

Signal:	DAD1A,Sig	g=254,4 Ref=360,10	0			
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
10.272	BB	1.84	940.39	30.15	50.52	
33.055	BB	3.54	921.03	12.27	49.48	
		Sum	1861.42			

1-Benzyl-2-oxo-4'-phenethyl-5'-(trifluoromethyl)spiro[indoline-3,2'-pyrrolidine]-3',3'-dicarbonitrile (**3o**)

Conditions: Chiral ART Amylose-SA (with column guard), 20% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 12.6 min, t_R (minor) = 7.5 min.

Asymmetric trace: 73% ee

Racemic trace

Single Injection	Report		Agilent Technologies
Data file:	WR 2.227 RAC (15% IPA-Hexane, S	A, 25 ul).dx	
Sequence Name:	SingleSample	Project Name:	WR
Sample name:	WR 2.227 RAC (15% IPA-Hexane, SA, 25 ul)	Operator:	SYSTEM
Instrument:	1100HPLC	Injection date:	2021-10-04 16:14:37+01:00
lnj. volume:	25.000	Location:	4
Acq. method:	15% IPA-HEX 30 mins.amx	Туре:	Sample
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount:	0.00
Manually modified:	Manual Integration		

Signal:	DAD1A,Si	g=254,4 Ref=360,100				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
8.004	MM m	0.29	1877.83	98.58	50.43	
13.860	MM m	0.46	1845.80	61.61	49.57	
		Sum	3723.63			

1"-benzyl-4'-phenyl-5'-(trifluoromethyl)dispiro[indene-2,3'-pyrrolidine-2',3"-indoline]-1,2",3-trione (5a)

Conditions: Chiral art Amylose-SA (with column guard), 35% CHCl₃-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 10.7 min, t_R (minor) = 5.4 min.

Asymmetric trace: 85% ee

orginal.	2/12/1/(,olg/204,4/1/cir/000,100							
RT [min]	Туре	Width [min]	Area	Height	Area%	Name		
5.382	VV	0.57	543.23	159.05	7.47			
10.681	VV	1.88	6731.52	270.82	92.53			
		Sum	7274.75					

Racemic trace

Single Injectio	Agilent Technologies		
Data file:	WR 1.136 RAC (35% CHCl3-Hex, S/	A, 10 uL).dx	
Sequence Name:	SingleSample	Project Name:	WR
Sample name:	WR 1.136 RAC (35% CHCl3-Hex, SA, 10 uL)	Operator:	SYSTEM
Instrument:	1100HPLC	Injection date:	2021-07-02 11:44:03+01:00
lnj. volume:	10.000	Location:	1
Acq. method:	35% CHCl3 30 mins 10 micro L.amx	Туре:	Sample
Processing method:	3D UV Quantitative_DefaultMethod.pmx	Sample amount:	0.00
Manually modified:	Manual Integration		

Signal:	DAD1A,Sig	g=254,4 Ref=360,10	00			
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
6.298	BV	0.99	1672.26	94.68	50.82	
11.038	VB	1.56	1618.08	70.05	49.18	
		Sum	3290.35			

5 Kinetic Study

5.1 Kinetic profiling and catalyst screening experiments

Prior to the catalyst screening, a kinetic profiling experiment was carried out with **C1** (Figure SX). 10 mol% of catalyst and 50 mol% of EtOAc (NMR standard) were added, and the reaction mixture was subjected to a series of ¹H NMR experiments over the course of 24 h. The cyclization proceeds smoothly to complete conversion in around 3.5 h. The reaction mixture was then concentrated *in vacuo*, and the product then purified via prep-TLC to the obtain the *ee* via HPLC: Chiral art Amylose-SA (with column guard), 15% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 19.8 min, t_R (minor) 10.5 min.

Figure X: Formation of spirocycle **3a** (blue) and consumption of ketimine **1a** (red) as a function of time. Reaction conditions: **1a** (0.1 mmol), **2a** (0.15 mmol), **C1** (0.01 mmol), CD₂Cl₂ (1 mL), ethyl acetate (0.05 mmol). Catalysts **C2-C5** the remaining 4 catalysts were screened by the same procedure and subjected to a series of ¹H NMR experiments to compare the activity and *ee* from each catalyst (**Scheme S1** and **Figure S3**). All catalysts screened led to a reduction in *ee* and d.r. relative to **C1**.

Scheme S1. [a] Reaction conditions: **108** (0.1 mmol), **111** (0.15 mmol), catalyst (0.01 mmol), CD₂Cl₂ (1 mL), ethyl acetate¹/triisopropylbenzene² (0.05 mmol); *Plus NEt₃ (0.01 mmol).

Internal standards were used to quantitatively measure the conversion and yield. (Figure S3). These indicate that the most active catalyst is C4,^{*} for which complete consumption of starting material was observed after ~30 min. However, this high reactivity was not mirrored in stereoselectivity: the major diastereomer was formed in 54% yield and -41% *ee*, and the d.r. was a mere 3:2. Squaramide catalysts C2 and C3 proved to be poor catalysts in terms of both conversion and stereoselectivity. The poor conversion may be attributed in part to their observed low solubilities in CD_2Cl_2 . C2 formed product slowly, ultimately reaching 72% yield after 25 h, while C3 yielded no product at all. Lastly guanidine-

^{*} Used alongside NEt₃ as co-catalyst. No product formation was observed after 16 h when NEt₃ was added in the absence of the thiourea.

based catalyst (**C5**) catalysed the spiro-annulation slowly, and gave minimal diastereocontrol (1.2:1 d.r.). The major diastereomer was formed in 28% yield after 26 h, in 46% *ee*.

t / min

Figure S3: Formation of spirocycle **125** with each catalyst. Reaction conditions: **1a** (0.1 mmol), **2a** (0.15 mmol), catalyst (0.01 mmol), CD₂Cl₂ (1 mL), internal standards: ethyl acetate or triisopropylbenzene (0.05 mmol). Solid lines indicate NMR concentration of the major diastereomer (**3a**_{maj}), dashed lines indicate NMR concentration of the starting material (**1a**).

5.2 HPLCs Traces for Catalyst Screen

Catalyst C1

Conditions: Chiral art Amylose-SA (with column guard), 15% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 19.4 min, t_R (minor) = 10.4 min.

Asymmetric trace: 92% ee

					•		
Name	Area%	Height	Area	Width [min]	Туре	RT [min]	
	3.89	3.16	83.31	1.14	BB	10.439	
	96.11	44.41	2058.89	3.04	BB	19.418	
			2142.21	Sum			

Catalyst C2

Conditions: Chiral art Amylose-SA (with column guard), 15% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 19.4 min, t_R (minor) = 10.4 min.

Asymmetric trace: 38% ee

Signal:	DAD1B,Sig	g=254,4 Ref=off				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
10.384	BB	1.36	1269.46	46.39	30.78	
19.423	BV	2.57	2854.92	60.60	69.22	
		Sum	4124.38			

Catalyst C4

Conditions: Chiral art Amylose-SA (with column guard), 15% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 19.3 min, t_R (minor) = 10.3 min.

Asymmetric trace: -41% ee

				· · ·		•		
Nam	Area%	Height	Area	Width [min]	Туре	RT [min]		
	70.52	47.99	1336.71	1.77	BV	10.159		
	29.48	12.56	558.78	2.23	BV	19.214		
			1895.49	Sum				

Catalyst C5

Conditions: Chiral art Amylose-SA (with column guard), 15% IPA-hexane 1.0 mL/min, λ = 254 nm, t_R (major) = 19.3 min, t_R (minor) = 10.3 min.

Asymmetric trace: 43% ee

Signal:	DAD1B,Si	g=254,4 Ref=off				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
10.304	BV	1.16	557.29	20.28	28.30	
19.318	BB	2.63	1411.73	30.58	71.70	
		Sum	1969.02			

6 X-ray Crystallography

6.1 Single Crystal Data for (–)-3d_{maj} (CCDC 2103731)

Crystal data Chemical formula $C_{31}H_{21}F_3N_4O$ 522.52 $M_{
m r}$ Crystal system, space group Monoclinic, P21 Temperature (K) 150 *a*, *b*, *c* (Å) 11.6334 (6), 6.6182 (4), 16.7064 (9) β (°) 91.462 (5) $V(Å^3)$ 1285.84 (12) Ζ 2 Radiation type Cu Ka μ (mm⁻¹) 0.82 Crystal size (mm) $0.24 \times 0.16 \times 0.16$ Data collection Diffractometer Oxford Diffraction SuperNova Absorption correction Multi-scan CrysAlis PRO (Rigaku Oxford Diffraction, 2017) T_{\min}, T_{\max} 0.59, 0.88 No. of measured, independent and 39351, 4910, 4258 observed $[I > 2.0\sigma(I)]$ reflections 0.108 $R_{\rm int}$ $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.625 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.108, 0.354, 1.62 No. of reflections 4910 No. of parameters 408 No. of restraints 127 H-atom treatment H-atom parameters not refined $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$ 1.52, -0.66Absolute structure Parsons, Flack & Wagner (2013), 1925 Friedel Pairs Absolute structure parameter 0.11(7)

6.2 Single Crystal Data for (–)-3I_{maj} (CCDC 2114148)

Crystal data	
Chemical formula	C29H24F3N3O3
Mr	519.51
Crystal system, space group	Orthorhombic, P212121
Temperature (K)	100
a, b, c (Å)	11.84750 (1), 13.54710 (1), 15.256700 (14)
V (Å3)	2448.69 (1)
Z	4
Radiation type	Си Κα
μ (mm−1)	0.91
Crystal size (mm)	0.36 × 0.28 × 0.24
Data collection	
Diffractometer	
Absorption correction	Multi-scan
CrysAlis PRO (Rigaku Oxford Diffraction, 2017)	
Tmin, Tmax	0.55, 0.80
No. of measured, independent and	
observed [I > 2.0σ(I)] reflections	22989, 4737, 4681
Rint	0.000
(sin θ/λ)max (Å–1)	
Refinement	
R[F2 > 2σ(F2)], wR(F2), S	0.026, 0.064, 0.94
No. of reflections	4737
No. of parameters	344
H-atom treatment	H-atom parameters not refined
Δρmax, Δpmin (e Å–3)	0.28, -0.31
Absolute structure	Parsons, Flack & Wagner (2013), 2037 Friedel Pairs
Absolute structure parameter	0.04 (3)

6.3 Single Crystal Data for (±)-5a (CCDC 2103730)

Crystal data	
Chemical formula	$C_{33}H_{23}F_3N_2O_3$
M _r	552.53
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.52763 (10), 22.8402 (2), 12.17728 (14)
β (°)	95.6178 (10)
$V(Å^3)$	2637.20 (5)
Ζ	4
Radiation type	Cu Ka
$\mu (mm^{-1})$	0.87
Crystal size (mm)	$0.26\times0.14\times0.12$
Data collection	
Diffractometer	Oxford Diffraction SuperNova
Absorption correction	Multi-scan <i>CrysAlis PRO</i> (Rigaku Oxford Diffraction, 2017)
T_{\min}, T_{\max}	0.89, 0.90
No. of measured, independent and observed $[I > 2.0\sigma(I)]$ reflections	15149, 5075, 4646
R _{int}	0.069
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.615
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.046, 0.123, 1.00
No. of reflections	5074
No. of parameters	374
No. of restraints	4
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{max}, \Delta \rho_{min} (e \text{ Å}^{-3})$	0.28, -0.33

7 NMR spectra

200		 140		100	 60	 	 ppm		
							PCPE PLW2 PLW1 F2 - SI SF WDW SSB LB GB PC	2 17. 2 0. 3 0. Processing 100	90.00 usec 29199982 W 48032999 W 24160001 W 9 parameters 131072 0.6077299 MHz EM 0 1.00 Hz 0 1.00 Hz 0
							TD0 SF01 NUC1 P0 P1 P1W1 SF02 NUC2 CPDF	96. 96. 400 RG[2	1 0.6178003 MHz 13C 3.00 usec 9.00 usec 6800031 W 0.1116004 MHz 1H waltz64 90 00 usec
CDCl₃							FIDF AQ RG DW DE TE D1 D11	ES 1 1. 0.	0.500020 Hz .9999200 sec 2050 20.800 usec 6.50 usec 300.0 K 00000000 sec 300000 sec
101 MHz							TD SOLV NS DS SWH	ent 2	96150 CDC13 2048 4 4038.461 Hz
S2 ¹³ C NMR							F2 - Date Time INST PROE PULP	Acquisitic - RUM A HD Z10861 ROG	n Parameters 20200214 22.57 h WIII_400 8_0146 (zgpg30
3 5 7 8 4 Me s	0	 138.5	125.3 123.9 117.5				Curr NAME EXPN PROC	ent Data Pa O NO	rameters CAD-1-38 13 1

S102

S106

S112

2b NMME 13 EXTRO ¹³ C NMR 72 - Acquisition Parameters Data 200137 100 MHz 101 MHz 72 - Acquisition Parameters Data 20037 2003 2005 CDCl3 00 MHz 00 MHz 101 MHz 00 MHz 00 MHz CDCl3 00 MHz 00 MHz 101 MHz 00 MHz 00 MHz 101 MHz 00 MHz 00 MHz 102 MHZ 00 MHZ 00 MHZ 103 MHZ 00 MHZ 00 MHZ 104 MHZ 00 MHZ 00 MHZ 105 MHZ 00 MHZ 00 MHZ 106 MHZ 00 MHZ 00 MHZ 107 MHZ 00 MHZ 00 MHZ 100 MHZ 00 M	1 1' NC 2 CN 3 8 7 4 3 5 6	 	 Gurrent	Data Parameters
¹³ C NMR B C2 - Acquisition Parameters 101 MHz B B CDCl3 CDCl3 CDCl3 CDCl3 CDCl3	2b		NAME EXPNO PROCNO	CAD-1-15 13
CDCl3 CDCl2 CDCl3 CDCl2	¹³ C NMR 101 MHz		F2 - Ac Date	<pre>quisition Parameters</pre>
	CDCl3		NS SWH FIDRES AQ RG DW DE TE D1 D11 TD0 SF01 NUC1 P0 P1 PLW1 SF02 NUC2 CPDPRG [PCP02 PLW2 PLW12 PLW13 F2 - Pr SI SF WDW SSB LB GB F0	4 24038.461 Hz 0.500020 Hz 1.9999200 sec 2050 20.800 usec 6.50 usec 300.0 K 1.000000 sec 1 100.6178003 MHz 13C 3.00 usec 96.68000031 W 400.1116004 MHz 1H 2 waltz64 90.00 usec 17.29199922 W 0.48032999 W 0.24160001 W socessing parameters 131072 100.6077273 MHz EM 0 1.00 Hz 0 1.40

		 	· · · · ·		<u> </u>	 · · · · ·			
	adaga ka sa sa ka sa	 I		<u></u>			 	ge P Orter	1.40
				11				SSB LB GB	0 1.00 Hz
								SF WDW	100.6077258 MHz EM
		1						F2 - Pro SI	cessing parameters 131072
								PLW13	0.24160001 W
								PLW2 PLW12	17.29199982 W 0.48032999 W
								CPDPRG [2 PCPD2	waltz64 90.00 used
								SFO2 NUC2	400.1116004 MHz 1H
								PI PLW1	96.68000031 W
								P0 D1	3.00 used
								SFO1 NUC1	100.6178003 MHz 13C
								TD0	0.03000000 sec 1
								D1 D11	1.00000000 sec
								DE TE	6.50 used 300.0 K
								DW	20.800 used
								AQ BG	1.9999200 sec
CDCl ₃								SWH FIDRES	24038.461 Hz 0.500020 Hz
								DS	4
101 MHz								SOLVENT NS	CDC13 4096
								TD	2gpg30 96150
¹³ C NMR								PROBHD	Z108618_0146 (
12								Time INSTRUM	0.24 h AVIII 400
21								PZ - ACQ Date_	20200122
								E0	-
6 5 Br								EXPNO PROCNO	13
								NAME	CAD-1-21
8 4 3				17				Current	Data Baramotora
<u> </u>				Λ (
g IÍ					°° I				

¹H NMR

400 MHz

CDCl₃

	Current Data Parameters NAME CAD-1-18 EXPNO 10 PROCNO 1
	F2 - Acquisition Parameters Date_ 20200120 Time 15.31 h INSTRUM AVIII_400 PROBHD Z108618_0146 (PULPROG zg30 TD 65536 SOLVENT CDC13 NS 32 DS 2
	SWH 8223.685 Hz FIDRES 0.250967 Hz AQ 3.9845889 sec RG 256 DW 60.800 usec DE 17.42 usec TE 300.0 K D1 1.0000000 sec
S123	TD0 1 SF01 400.1124708 MHz NUC1 1H P0 5.00 usec P1 15.00 usec PLW1 17.29199982 W F2 - Processing parameters SI 32768

S141

S143

S189

23 22 21	-72.87		
20 19 18 17_{15} , CE ¹⁶ 17_{15} , CE ¹⁶		Current NAME EXPNO PROCNO	Data Parameters WR 2.227 (600) 17 1
NC = 24 + 14 + 14 $2 + 14 + 14 + 14$ $3 + 7 + 14 + 14$ $4 + 9 + 10 + 10 + 11 + 12$ $13 + 12 + 12 + 12 + 12 + 12 + 12 + 12 +$		F2 - Acc Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ	quisition Parameters 20211006 19.41 h spect 2114607_0188 (zgflqn 261896 CDC13 16 4 133928.578 Hz 1.022761 Hz 0.9777451 sec
30		RG DW DE TE	186.92 3.733 usec 6.70 usec
Major diastereomer		D1 TD0 SF01	4.00000000 sec 1 564.6299217 MHz
¹⁹ F NMR		NUC1 P1 PLW1	19F 12.00 usec 49.00000000 W
564 MHz		F2 - Pro SI SF	cessing parameters 262144 564.6863882 MHz
CDCI₃		WDW SSB LB GB PC	EM 0 0.50 Hz 0 2.00
0 -20 -40 -60	-80 -100 -120 -140 -16	0 -180 ppm	

S211

$\begin{array}{c} 26 \\ 27 \\ 28 \\ 29 \\ 28 \\ 29 \\ 30 \\ 28 \\ 29 \\ 30 \\ 28 \\ 29 \\ 30 \\ 28 \\ 29 \\ 30 \\ 28 \\ 29 \\ 30 \\ 28 \\ 29 \\ 30 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 1$	Current Data Parameters NAME WR 1.136 (600) EXPNO 18 PROCNO 1
2 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 5 3 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	F2 - Acquisition Parameters Date_ 20210715 Time 5.25 h INSTRUM spect PROBHD Z114607_0188 (PULPROG zgflqn TD 261896 SOLVENT CDC13 NS 16 DS 4 SWH 133928.578 Hz FIDRES 1.022761 Hz
Major diastereomer	AQ 0.9777451 sec RG 186.92 DW 3.733 usec DE 6.70 usec
¹⁹ F NMR	TE 302.5 K D1 4.0000000 sec TD0 1 SF01 564.6299217 MHz
564 MHz	NUC1 19F P1 12.00 usec PLW1 49.0000000 W
CDCl₃	F2 - Processing parameters SI 262144 SF 564.6863882 MHz WDW EM SSB 0 LB 0.50 Hz GB 0 PC 2.00
0 -20 -40 -60	-80 -100 -120 -140 -160 -180 ppm

21 26 25 27 24 23 17 15 28 29 30 22 14 10 11 13 12 21 20 19 17 15 CF_{3} 0 10 11	6				CP-22						Cui NAM EXH PRC F2 Dat Tin INS PRC PUI TD SOI NS	rrent HE PNO OCNO - Acq e TRUM DBHD JPROG JVENT	Data Parameters WR 1.131 (600) 18 1 uisition Paramete: 20210715 2.18 h spect Z114607_0188 (zgflqn 261896 CDC13 16
5b											DS SWH FIL	l DRES	4 133928.578 H: 1.022761 H:
Major diastereomer											RG DW DE		186.92 3.733 u: 6.70 u:
¹⁹ F NMR											TE D1 TDC)	302.4 K 4.00000000 s: 1
564 MHz											SFC NUC P1 PLV)1 21 V1	564.6299217 Mi 19F 12.00 u: 49.00000000 W
CDCl₃											F2 SI SF WDW SSE LB GB PC	- Pro 1 3	cessing parameter: 262144 564.6863882 MJ EM 0 0.50 H: 0 2.00
-				k	" il								
-	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	ppm		

8 References

- 1 J. Cosier and A. M. Glazer, J. Appl. Crystallogr., 1986, **19**, 105–107.
- 2 *CrysAlisPRO*, Oxford Diffraction/Agilent Technologies UK Ltd, Yarnton, England.
- G. M. Sheldrick, Acta Crystallogr. Sect. A, 2015, **71**, 3–8.
- 4 L. Palatinus and G. Chapuis, J. Appl. Crystallogr., 2007, 40, 786–790.
- 5 P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout and D. J. Watkin, *J. Appl. Crystallogr.*, 2003, **36**, 1487.
- 6 R. I. Cooper, A. L. Thompson and D. J. Watkin, J. Appl. Crystallogr., 2008, 43, 1100–1107.
- 7 J. M. G. O. Ferreira, J. B. M. De Resende Filho, P. K. Batista, E. E. S. Teotonio and J. A. Vale, *J. Braz. Chem. Soc.*, 2018, **29**, 1382–1387.
- 8 M. Zhang, A. Q. Zhang, H. H. Chen, J. Chen and H. Y. Chen, *Synth. Commun.*, 2006, **36**, 3441–3445.
- 9 Y. Song, H. Jing, B. Li and D. Bai, *Chem. Eur. J*, 2011, **17**, 8731–8738.
- 10 S. P. Bhoite, A. H. Bansode and G. Suryavanshi, J. Org. Chem., 2020, 85, 14858–14865.
- 11 K. Yamashita, T. Tanaka and M. Hayashi, *Tetrahedron*, 2005, **61**, 7981–7985.
- 12 Z. Li, H. Li, X. Guo, L. Cao, R. Yu, H. Li and S. Pan, Org. Lett., 2008, 10, 803–805.
- T. M. Kadayat, S. Banskota, P. Gurung, G. Bist, T. B. Thapa Magar, A. Shrestha, J. A. Kim and E. S. Lee, *Eur. J. Med. Chem.*, 2017, **137**, 575–597.
- 14 C. S. Buxton, D. C. Blakemore and J. F. Bower, *Angew. Chem. Int. Ed.*, 2017, **56**, 13824–13828.
- 15 M. Ma, Y. Zhu, Q. Sun, X. Li, J. Su, L. Zhao, Y. Zhao, S. Qiu, W. Yan, K. Wang and R. Wang, *Chem. Commun.*, 2015, **51**, 8789–8792.
- 16 B. Ma, P. Wu, X. Wang, Z. Wang, H. X. Lin and H. X. Dai, *Angew. Chem. Int. Ed.*, 2019, 58, 13335– 13339.
- 17 C. Jin, M. Zhang, L. Wu, Y. Guan, Y. Pan, J. Jiang, C. Lin and L. Wang, *Chem. Commun.*, 2013, **49**, 2025–2027.
- 18 C. J. Thomson, D. M. Barber and D. J. Dixon, *Angew. Chem. Int. Ed.*, 2019, **58**, 2469–2473.
- 19 C. B. Tripathi, S. Kayal and S. Mukherjee, *Org. Lett.*, 2012, **14**, 3296–3299.
- 20 Y. Zhu, J. P. Malerich and V. H. Rawal, *Angew. Chem. Int. Ed.*, 2010, **49**, 153–156.
- 21 E. Matador, M. de Gracia Retamosa, D. Monge, J. Iglesias-Sigüenza, R. Fernández and J. M. Lassaletta, *Chem. Eur. J*, 2018, **24**, 6854–6860.
- 22 F. Yu, Z. Jin, H. Huang, T. Ye, X. Liang and J. Ye, Org. Biomol. Chem., 2010, 8, 4767–4774.
- 23 N. Akhtar, A. Saha, V. Kumar, N. Pradhan, S. Panda, S. Morla, S. Kumar and D. Manna, *ACS Appl. Mater. Interfaces*, 2018, **10**, 33803–33813.
- 24 M. H. Furigay, M. M. Boucher, N. A. Mizgier and C. S. Brindle, J. Vis. Exp., 2018, 1–10, doi:10.3791/57639.