Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary Information

A novel NIR fluorescent probe for highly sensitive detection of HNO and its application in bioimaging

Shenwei He^a, Jianming Zhu^a, Peiyao Xie^a, Jianfei Liu^a, Di Zhang^{b,*}, Jun Tang^a, Yong Ye^{a,*}

^a Green Catalysis Center, And College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China

^b Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.

Experimental

Apparatus and chemicals

Absorption spectra were accurately measured on a Lambda 35 UV/VIS spectrometer (Perkin Elmer). Fluorescence spectra were measured on the F-4500 FL Spectrophotometer and the EX Slit and EM Slit were both set at 10.0 nm. The pH was measured by a Model PHs-3C meter (Shanghai, China). ¹H NMR, ¹³C NMR and ³¹P NMR spectra were measured on a Bruker DTX-400 spectrometer using TMS as internal reference. HR-MS (high-resolution mass spectrometry) spectra were collected using the Q-Tof HR-MS spectrometer (Waters Micromass).

All the reagents were purchased from reagent companies without further purification and directly used in the experiment. The deionized water was purified by Milli-Q. The concentrations of all interference ions are as 10.00 mmol/L, including F⁻, Cl⁻, Br⁻, l⁻, CO₃⁻, HCO₃⁻, HPO₄²⁻, PO₄³⁻, NO₃⁻, NO₂⁻, SO₄²⁻, AcO⁻, HSO₃⁻, Na⁺, K⁺, HS⁻, Hcy, GSH, Cys, ¹O₂, ClO⁻, H₂O₂, NO, ONOO⁻. The preparation of interference anions is to weigh the corresponding sodium or potassium salt of the desired mass.

Synthesis

The synthetic procedure of probe **PITC-HNO** was shown in Scheme **1**. Compound **1** and **2** were synthesized by reported methods^{1, 2}.

Synthesis of Compound PITC-OCH₃ Compound **1** (241 mg, 1.0 mmol), ammonium acetate (154 mg, 2.0 mmol) and compound **2** (312 mg, 1.3 mol) were dissolved in 15 mL of glacial acetic acid. The mixture was refluxed and stirred at 118 °C for 24 h in nitrogen atmosphere. The reaction solution was cooled to room temperature, 2 mL of water was added to precipitate and the solution was filtered to obtain a crude product. After the crude product was dried in vacuum, dichloromethane was used as the eluent for column chromatography to obtain 347 mg of silver gray solid PITC-OCH₃ with 75% yield.

Synthesis of Compound PITC-OH At 0 °C, BBr₃ (0.48 mL, 5 mmol) was slowly added dropwise to a solution of PITC-OCH₃ (335 mg, 0.5 mmol) in anhydrous dichloromethane (10 mL). After a period of reaction, the solution was stirred at room temperature for 14 hours. Saturated NaHCO₃ solution (30 mL) was added to quench the reaction, then the aqueous layer was extracted with CH_2Cl_2 , the organic layer was dried over anhydrous Na₂SO₄ and concentrated in vacuo to obtain 210 mg of crude green product. The crude product was directly used to synthesize **PITC-HNO** without separation and purification.

Scheme 1 Synthetic route of PITC-OH

380

Fig. S2 ¹³C NMR spectra of PITC-HNO in CDCl₃

Fig.S4 ESI-HRMS spectra of PITC-HNO.

Fig.S5 The change of UV spectra of the **PITC-HNO** (10 μ M) solution after adding HNO (0–15 eq.) in PBS buffer solution (pH = 7.40, containing 40% DMF).

Fig. S6 The linear fitting of fluorescence intensity against concentrations of HNO (0–1.1 eq.) at 714 nm. λ_{ex} = 640 nm.

Fig.S7 The change of absorption spectra of PITC-HNO before and after response to HNO.

Fig.S8 The cytotoxicity test of different concentrations PITC-HNO in living HeLa cells for 24 h.

References

- 1. S. Gong, E. Zhou, J. Hong and G. Feng, *Anal Chem*, 2019, **91**, 13136-13142.
- 2. J. Mao, N. He, Z. Ning, Q. Zhang, F. Guo, L. Chen, W. Wu, J. Hua and H. Tian, *Angew Chem Int Ed Engl*, 2012, **51**, 9873-9876.