Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary Information

A Cu²⁺-selective colorimetric-fluorometric sensor based on an anthracenyl-

modified oxacalix[4]arene

Shao-Guang Wang^a, Yu Pang^b, Min Xue^b, and Yong Yang^{a, *}

^a Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province,

Zhejiang Sci-Tech University, Hangzhou 310018, China

^b Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China

Table of Contents

Table of Contents	S1
1. General Information for Synthesis, Characterization and Spectroscopy Measurements	S2
2. Synthetic Details and Characterization Data for New Compounds	S2
3. Control Experiments with AP	S5
4. Determination of the Limit of Detection	S7
5. Job Plots for Complex AO-Cu ²⁺ using UV-vis and FL Measurements	S8
6. The Nonlinear Fitting Equation for the 1:1 Binding Mode Using FL Titration Data	S10
7. Interference Studies	S11
8. Protocol to analyze Cu ²⁺ in aqueous samples	S12
9. Reference	S12

* Corresponding author.

E-mail address: yangyong@zstu.edu.cn

1. General Information for Synthesis, Characterization and Spectroscopy Measurements

All solvents for reactions and column chromatography were used directly as received. ¹H and ¹³C NMR spectra were recorded on a Bruker AV 400 MHz and 100 MHz instruments. Chemical shifts were expressed in parts per million (δ : ppm) TMS ($\delta = 0$ ppm) as an internal standard. Coupling constants (*J* values) were given in hertz (Hz). HRMS analysis was performed using a MALDI-TOF or ESI mass spectrometer.

Commercial CHCl₃ was first washed with deionized water three times and then dried over anhydrous Na₂SO₄. Fresh CHCl₃ was distilled from P₂O₅ before spectroscopic measurements. CH₃CN for spectroscopy measurement was distilled. UV-vis spectra and the fluorescent emission spectra were recorded on an Olis DSM 172 spectrophotometer. 10 mm \times 10 mm cuvettes were used. Usually, data were collected at 1 nm intervals. The slitwidth was fixed at 2.5 mm and the integration time was set as 0.1 s. High resolution mass spectra (HRMS) analysis was performed with a Waters Xevo G2-S Q-TOF mass spectrometer.

The chemicals were used directly as purchased from Energy Chemical Reagents, Aladdin Reagents, J&K Chemical Reagents.

2. Synthetic Details and Characterization Data for New Compounds

Tetraaminooxacalix[4]arene (0.33 g, 0.4 mmol, 1 equivalent) and 9-anthracaldehyde (0.34 g, 1.6 mmol, 4 equivalents) were dissolved in 20 mL anhydrous THF. Then catalytic amount of CF_3COOH was added to the reaction mixture. The reaction mixture was heated to reflux for 3 hours. After evaporation of solvent under reduced pressure, the residue was purified *via* column chromatography (silica gel, CH_2Cl_2 : EtOAc = 30:1 as eluent). The product (0.54 g, 86%) was a yellow solid.

m. p.: 283–284 °C.

¹H NMR (400 MHz, CDCl₃ (passing through a K₂CO₃ column before use), TMS, 298 K, ppm): δ 9.42 (s, 4H, Ar-*H*-anthracene), 8.96 (s, 2H, Ar-*H*), 8.25 (d, *J* = 8.3 Hz, 8H, Ar-*H*-anthracene), 7.85 (s, 4H, N=C*H*), 7.45-7.37 (m, 8H, Ar-*H*-anthracene), 7.27 (s, 2H, Ar-*H*), 7.16 (s, 2H, Ar-*H*), 7.00-6.85 (m, 16H, Ar-*H*-anthracene), 6.25 (s, 2H, Ar-*H*), 4.13 (d, *J* = 6.4 Hz, 8H, COOC*H*₂), 2.10-1.90 (m, 4H, C*H*), 0.97-0.92 (m, 24H, C*H*₃).

¹³C NMR (75 MHz, CDCl₃ (passing through a K₂CO₃ column before use), TMS, 298 K, ppm): δ 164.5, 163.6, 163.3, 146.9, 143.5, 138.1, 131.4, 130.13, 130.06, 128.5, 126.8, 124.6, 123.9, 123.5, 119.2, 113.2, 112.7, 101.7, 71.3, 27.9, 19.2.

HRMS (ESI⁺) calcd. for $[C_{104}H_{84}N_4O_{12} + H]^+$ 1581.6159, found: 1581.6210.

Figure S1. ¹H NMR spectrum of compound AO, CDCl₃, 298 K, 400 MHz.

Figure S2. ¹³C NMR spectrum of compound AO, CDCl₃, 298 K, 75 MHz.

A mixture of 1, 3-phenylenediamine (0.05 g, 0.5 mmol) and 9-anthraldehyde (0.21 g, 1.0 mmol) in 40 mL anhydrous CH₃OH was heated to reflux for 15 min. The hot solution was filtered. The filtrate was left to cool down to 5 °C. Upon standing for 15 hours, the precipitated yellow solid (0.17 g, 70%) was collected by filtration and washed with CH₃OH.

т. р.: 207–208 °С.

¹H NMR (400 MHz, CDCl₃, TMS, 298 K, ppm): δ 9.83 (s, 2H, Ar-*H*-anthracene), 8.83 (d, *J* = 8.7 Hz, 4H, Ar-*H*-anthracene), 8.60 (s, 2H, C*H*=N), 8.08 (d, *J* = 8.2 Hz, 4H, Ar-*H*-anthracene), 7.65-7.50 (m, 10H, Ar-*H*-anthracene and Ar-*H*), 7.41 (dd, *J* = 7.8 Hz, *J* = 2.0 Hz, 2H, Ar-*H*).

¹³C NMR (100 MHz, CDCl₃, TMS, 298 K, ppm): δ 160.4, 153.8, 131.4, 131.0, 130.8, 130.2, 129.1, 127.4, 127.1, 125.5, 124.8, 119.0, 113.6.

Figure S3. ¹H NMR spectrum of compound AP, CDCl₃, 298 K, 400 MHz.

Figure S4. ¹³C NMR spectrum of compound AP, CDCl₃, 298 K, 100 MHz.

3. Control Experiments with AP

Figure S5. Photographs of **AP** (2×10^{-5} M) upon addition of 2.5 equivalents of various metal ions in CH₃CN-CHCl₃ solution (1:1, v/v), (a) under natural light, and (b) under UV lamp $\lambda = 365$ nm.

Figure S6. UV-vis absorption spectra of **AP** (2×10^{-5} M) in the absence and presence of Cd²⁺, Cu²⁺, Co²⁺, Li⁺, Mg²⁺, Mn²⁺, Na⁺, Ni²⁺, Zn²⁺, Hg²⁺, Cu⁺ (each 2.5 equivalents) in CH₃CN–CHCl₃ solution (1:1, v/v).

Figure S7. FL emission spectra for AP (2 × 10⁻⁵ M) in the absence and presence of Cd²⁺, Cu²⁺, Co²⁺, Li⁺, Mg²⁺, Mn²⁺, Na⁺, Ni²⁺, Zn²⁺, Hg²⁺, Cu⁺ (each 2.5 equivalents) in CH₃CN–CHCl₃ solution (1:1, v/v), $\lambda_{ex} = 365$ nm.

4. Determination of the Limit of Detection

Figure S8. Twenty scans of fluorescence emission spectra of **AO** (2×10^{-5} M) in CH₃CN–CHCl₃ solution (1:1, v/v), $\lambda_{ex} = 365$ nm. The standard deviation of the FL intensity data at $\lambda = 490$ nm was 112.9. The limit of detection (LOD) was calculated based on the following equation.

Limit of Detection (LOD) =
$$\frac{3\sigma}{K} = 3 \times \frac{112.9}{2.5 \times 10^9 \text{ M}^{-1}} = 1.4 \times 10^{-7} \text{ M}$$
 (Eq. S1)

 σ : the standard deviation for FL intensity of AO solution at $\lambda = 490$ nm

K: the slope of the plot of changes in FL intensity at $\lambda = 490$ nm vs [Cu²⁺]

5. Job Plots for Complex AO-Cu²⁺ using UV-vis and FL Measurements

Figure S9. UV-vis spectra of mixtures of AO and Cu²⁺ with different ratios in CH₃CN–CHCl₃ solution (1:1, v/v). The total concentration was fixed at 2×10^{-5} M.

Figure S10. Job plot for the complex between **AO** and Cu²⁺ in CH₃CN–CHCl₃ solution (1:1, v/v), using UV-vis absorption values at λ = 408 nm, showing a 1:1 stoichiometry.

Figure S11. Fluorescence spectrum of mixtures of AO and Cu²⁺ with different ratios in CH₃CN–CHCl₃ solution (1:1, v/v). The total concentration was fixed at 2×10^{-5} M, $\lambda_{ex} = 365$ nm.

Figure S12. Job plot for the complex between **AO** and Cu^{2+} in $CH_3CN-CHCl_3$ solution (1:1, v/v), using fluorescence intensity values at λ = 490 nm, showing a 1:1 stoichiometry.

6. The Nonlinear Fitting Equation for the 1:1 Binding Mode Using FL Titration Data

The nonlinear fitting equation for determination of association constant (K_a) of **AO**-Cu²⁺ complex was based on the following 1:1 bind mode. The FL intensities at $\lambda = 490$ nm was used for fitting. ^{S1}

7. Interference Studies

Figure S13. UV–vis spectra of **AO** (2×10^{-5} M) with various metal ions Mⁿ⁺: Cd²⁺, Co²⁺, Li⁺, Mg²⁺, Mn²⁺, Na⁺, Ni²⁺, Zn²⁺, Hg²⁺, Cu⁺ (25 equivalents) in CH₃CN–CHCl₃ solution (1:1, v/v).

Figure S14. FL emission spectra of **AO** (2×10^{-5} M) with various metal ions Mⁿ⁺: Cd²⁺, Co²⁺, Li⁺, Mg²⁺, Mn²⁺, Na⁺, Ni²⁺, Zn²⁺, Hg²⁺, Cu⁺ (25 equivalents) in the absence and presence of Cu²⁺ (2.5 equivalents) in CH₃CN–CHCl₃ solution (1:1, v/v), $\lambda_{ex} = 365$ nm.

8. Protocol to analyze Cu²⁺ in aqueous samples

Bulk solution of the sensor **AO** (1×10^{-3} M) was prepared by dissolving **AO** (4.7 mg, 3.0 µmol) in 3 mL CH₃CN-CHCl₃ solution (1:1, v/v). Bulk solution of Cu(ClO₄)₂ (1×10^{-3} M) was obtained by dissolving solid (1.1 mg, 3.0 µmol) in 3 mL water. In the following six parallel experiments, 60 µL of **AO** solution and different volume (3 µL, 9 µL, 21 µL, 36 µL, 45 µL, 60 µL) of the above Cu(ClO₄)₂ solution were mixed in 3 mL CH₃CN-CHCl₃ solution (1:1, v/v) and 3 mL water. Then the solutions were heated to reflux in sealed tubes for 24 h. Solvent was removed in vacuo and the solids were dried at 100 °C for 24 hours to remove all solvent. Each sample was prepared by dissolving the above dried solid in 3 mL CH₃CN-CHCl₃ solution (1:1, v/v) and the fluorescence spectra were recorded (see below).

Figure S15. Fluorescence spectra of sensor **AO** (2×10^{-5} M) and with varied concentration of Cu²⁺ from aqueous sample mixed in CH₃CN-CHCl₃ solution (1:1, v/v), $\lambda_{ex} = 365$ nm.

Figure S16. Linear fitting result of the fluorescence intensity data at $\lambda = 490$ nm vs concentration of Cu²⁺, demonstrating a linear response.

9. Reference

S1 P. Thordarson, Determining association constants from titration experiments in supramolecular chemistry, Chem. Soc. Rev., 2011, 40, 1305-1323.