Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

## **Supporting Information**

## **Digestive Ripening Yields Atomically Precise Au Nanomolecules.**

Senthil Kumar Eswaramoorthy and Amala Dass\*

Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS 38677, United States

\*corresponding author(s): amal@olemiss.edu

## Table of contents

- Figure S1. Dodecanethiol protected atomically precise gold nanomolecules synthesized using digestive ripening method. a) MALDI-MS data showing high (green) and low (black) laser. (b) ESI-MS data showing the presence of Au<sub>144</sub>, Au<sub>137</sub> and Au<sub>25</sub> species in the product.
- 2. **Figure S2.** UV-vis plot of the digestive ripening synthesis products protected by hexanethiol and dodecanethiol.
- 3. **Figure S3.** Hexanethiol protected gold nanomolecules a) UV-vis plot of Au<sub>144</sub>(SR)<sub>60</sub> (with Au<sub>137</sub>(SR)<sub>54</sub>) and Au<sub>25</sub>(SR)<sub>18</sub> after SEC separation. b) Photograph of the SEC column separation performed on final product of digestive ripening synthesis.
- 4. **Figure S4**. Dodecanethiol protected gold nanomolecules a) UV-vis plot of Au<sub>144</sub>(SR)<sub>60</sub> (with Au<sub>137</sub>(SR)<sub>54</sub>) and Au<sub>25</sub>(SR)<sub>18</sub> after SEC separation. b) Photograph of the SEC column separation performed on final product of digestive ripening synthesis.
- 5. Figure S5. Hexanethiol protected gold nanomolecules after SEC a) MALDI-MS spectra showing 30 kDa species (Au<sub>144</sub>(SR)<sub>60</sub> & Au<sub>137</sub>(SR)<sub>54</sub>) and Au<sub>25</sub>(SR)<sub>18</sub> (7 kDa). b) ESI-MS spectra showing 30 kDa species (Au<sub>144</sub>(SR)<sub>60</sub> & Au<sub>137</sub>(SR)<sub>54</sub>) and Au<sub>25</sub>(SR)<sub>18</sub> (7 kDa). \*fragment peak.
- Figure S6. Dodecanethiol protected gold nanomolecules after SEC a) MALDI-MS spectra showing 30 kDa species (Au<sub>144</sub>(SR)<sub>60</sub> & Au<sub>137</sub>(SR)<sub>54</sub>) and Au<sub>25</sub>(SR)<sub>18</sub> (8 kDa). b) ESI-MS spectra showing 30 kDa species (Au<sub>144</sub>(SR)<sub>60</sub> & Au<sub>137</sub>(SR)<sub>54</sub>) and Au<sub>25</sub>(SR)<sub>18</sub> (8 kDa). \*fragment peak.
- 7. **Figure S7**. High (green) and low (black) laser MALDI-MS data of dodecanethiol protected gold nanomolecules comparing 2 methods (a) Digestive Ripening (b) Brust method.
- 8. **Figure S8**. MALDI-MS and ESI-MS data of hexanethiol protected gold nanomolecules synthesized using digestive ripening synthesis method with ToABr as phase transfer agent. (\* marked peaks are impurity from previous sample).



**Figure S1.** Dodecanethiol protected atomically precise gold nanomolecules synthesized using digestive ripening method. a) MALDI-MS data showing high (green) and low (black) laser. (b) ESI-MS data showing the presence of Au<sub>144</sub>, Au<sub>137</sub> and Au<sub>25</sub> species in the product.



**Figure S2.** UV-vis plot of the digestive ripening synthesis products protected by hexanethiol and dodecanethiol.



**Figure S3.** Hexanethiol protected gold nanomolecules a) UV-vis plot of  $Au_{144}(SR)_{60}$  (with  $Au_{137}(SR)_{54}$ ) and  $Au_{25}(SR)_{18}$  after SEC separation. b) Photograph of the SEC column separation performed on final product of digestive ripening synthesis.



**Figure S4.** Dodecanethiol protected gold nanomolecules a) UV-vis plot of  $Au_{144}(SR)_{60}$  (with  $Au_{137}(SR)_{54}$ ) and  $Au_{25}(SR)_{18}$  after SEC separation. b) Photograph of the SEC column separation performed on final product of digestive ripening synthesis.



**Figure S5.** Hexanethiol protected gold nanomolecules after SEC a) MALDI-MS spectra showing 30 kDa species  $(Au_{144}(SR)_{60} \& Au_{137}(SR)_{54})$  and  $Au_{25}(SR)_{18}$  (7 kDa). b) ESI-MS spectra showing 30 kDa species  $(Au_{144}(SR)_{60} \& Au_{137}(SR)_{54})$  and  $Au_{25}(SR)_{18}$  (7 kDa). \* fragment peak.



**Figure S6.** Dodecanethiol protected gold nanomolecules after SEC separation a) MALDI-MS spectra showing 30 kDa species  $(Au_{144}(SR)_{60} \& Au_{137}(SR)_{54})$  and  $Au_{25}(SR)_{18}$  (8 kDa). b) ESI-MS spectra showing 30 kDa species  $(Au_{144}(SR)_{60} \& Au_{137}(SR)_{54})$  and  $Au_{25}(SR)_{18}$  (8 kDa). \* fragment peak.



**Figure S7.** High (green) and low (black) laser MALDI-MS data of dodecanethiol protected gold nanomolecules comparing 2 methods (a) Digestive Ripening (b) Brust method



Figure S8. MALDI-MS and ESI-MS data of hexanethiol protected gold nanomolecules synthesized using digestive ripening synthesis method with ToABr as phase transfer agent. (\* marked peaks are impurity from previous sample)