Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

[4+2]-Annulation of Prop-2-ynylsulfonium Salts and *N*-substituted pyrrole-2-carboxaldehydes: Access to Indolizines Containing a Thioether Group

Liping Fu^{a, †}, Jing Wang^{b, †}, Xiaojuan Chen^{b, †}, Tao Shi^b, Zhanying Shao^c, Jinbai Chen^a, Chongmei Tian^a, Zhongdong Zhou^{a, *}, Huajian Zhu^{b, *}, Jiankang Zhang^{b, *}

^a Department of Pharmacy, Shaoxing TCM Hospital Affiliated to Zhejiang Chinese Medical University, Shaoxing, Zhejiang 312000, PR China

^b School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, PR China

^c Zhejiang Yongtai Technology Co., Ltd., Taizhou, Zhejiang 317016, PR China

Table of contents

- 1. Experimental (General procedures and characterization data for target compounds)
- 2. ¹H and ¹³C NMR spectra for target products

1. Experimental

General. All reactions were carried out in test tube under air atmosphere. Chemicals were purchased from commercial suppliers and used without further purification. Purification of reaction products were carried out by chromatography using silica gel (200-300 mesh). High resolution MS data were recorded on Agilent 6200 Series TOF spectrometer. NMR spectra were recorded on AVIII for ¹H NMR at 500/400 MHz and for ¹³C NMR at 125/100 MHz. For ¹H NMR, tetramethylsilane (TMS) was served as internal standard (δ). The spectra data presented here are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), and coupling constant(s) in Hertz. For ¹³C NMR TMS was used as internal standard and spectra were obtained with complete proton decoupling.

General procedure for the synthesis of N-substituted pyrrole-2-carboxaldehydes 1

To a mixture of **S2** (5 mmol, 0.48 g) and K_2CO_3 (6 mmol, 0.83 g) in 40 mL of CH₃CN were added corresponding α -bromo-substituted ketone (5.5 mmol), and the reaction was proceeded at room temperature for 12 h. After completion, the mixture was filtered and dried under reduced pressure. Then the residue was diluted with 30 ml of ethyl acetate and washed with water for 3 times. The organic layer was dried with sodium sulfate, concentrated and purified by silica gel chromatography to obtain 1.

1-(2-(4-fluorophenyl)-2-oxoethyl)-1H-pyrrole-2-carbaldehyde (**1d**) ¹H NMR (500 MHz, CDCl₃) δ 9.51 (1H, d, *J* = 1.0 Hz), 8.06 – 8.02 (2H, m), 7.21 – 7.17 (2H, m), 7.04 (1H, dd, *J* = 4.0, 1.5 Hz), 6.96 (1H, t, *J* = 1.0 Hz), 6.36 (1H, dd, *J* = 4.0, 2.5 Hz), 5.77 (2H, s). HRMS calcd for C₁₃H₁₀FNO₂+H⁺: 232.0876, found: 232.0874.

1-(2-(4-nitrophenyl)-2-oxoethyl)-1H-pyrrole-2-carbaldehyde (**1e**) ¹H NMR (400 MHz, CDCl₃) δ 9.50 (1H, d, J = 1.0 Hz), 8.39 – 8.36 (2H, m), 7.58 – 7.55 (2H, m), 7.07 (1H, dd, J = 4.0, 1.6 Hz), 6.98 (1H, t, J = 1.0 Hz), 6.39 (1H, dd, J = 4.0, 2.8 Hz), 5.78 (2H, s). HRMS calcd for C₁₃H₁₀N₂O₄+H⁺: 259.0713, found: 259.0715.

1-(2-(3-chlorophenyl)-2-oxoethyl)-1H-pyrrole-2-carbaldehyde (**1h**) ¹H NMR (500 MHz, CDCl₃) δ 9.51 (1H, d, J = 1.0 Hz), 7.97 (1H, t, J = 1.5 Hz), 7.89 (1H, dt, J = 7.5, 1.0 Hz), 7.62-7.59 (1H, m), 7.47 (1H, t, J = 8.0 Hz), 7.05 (1H, dd, J = 4.0, 1.5 Hz), 6.95 (1H, t, J = 1.0 Hz), 6.37 (1H, dd, J = 4.0, 2.5 Hz), 5.76 (2H, s). HRMS calcd for C₁₃H₁₀ClNO₂+H⁺: 248.0473, found: 248.0470.

1-(2-(2-chlorophenyl)-2-oxoethyl)-1H-pyrrole-2-carbaldehyde (**1j**) ¹H NMR (500 MHz, CDCl₃) δ 9.51 (1H, d, *J* = 1.0 Hz), 7.77 (1H, dt, *J* = 7.5, 1.0 Hz), 7.46 (1H, d, *J* = 1.0 Hz) ,7.45 (1H, d, *J* = 1.0 Hz), 7.41- 7.38 (1H, m), 7.04 (1H, dd, *J* = 4.0, 2.0 Hz), 7.00 (1H, t, *J* = 1.0 Hz), 6.36 (1H, dd, *J* = 4.0, 2.5 Hz), 5.65 (2H, s). HRMS calcd for C₁₃H₁₀ClNO₂+H⁺: 248.0473, found: 248.0470.

1-(2-oxopropyl)-1H-pyrrole-2-carbaldehyde (1p)

¹H NMR (500 MHz, CDCl₃) δ 9.50 (1H, d, J = 1.0 Hz), 7.00 (1H, dd, J = 4.0, 2.0 Hz), 6.87 (1H, t, J = 1.0 Hz), 6.32 (1H, dd, J = 4.0, 2.5 Hz), 5.10 (2H, s), 2.24 (3H, s). HRMS calcd for C₈H₉NO₂+H⁺: 152.0706, found: 152.0708.

1-(3,3-dimethyl-2-oxobutyl)-1H-pyrrole-2-carbaldehyde (**1q**) ¹H NMR (500 MHz, CDCl₃) δ 9.47 (1H, d, J = 1.0Hz), 6.98 (1H, dd, J = 4.0, 1.5 Hz), 6.83 (1H, t, J = 1.0 Hz), 6.30 (1H, dd, J = 4.0, 2.5 Hz), 5.36 (2H, s), 1.28 (9H, s). HRMS calcd for C₁₁H₁₅NO₂+H⁺: 194.1176, found: 194.1174.

General procedure for the synthesis of prop-2-ynyl-substituted sulfonium salt 2

A mixture of bromopropyne (20 mmol) and corresponding thioether (40 mmol) was stirred in 50 mL of CH_3CN at room temperature overnight. The reaction mixture was filtered, and the filter cake was washed with 30 ml of petroleum ether which was dried under vacuum to obtain **2** as white solid.

ethyl(methyl)(prop-2-yn-1-yl)sulfonium bromide(2b)

¹H NMR (400 MHz, DMSO) δ 4.80 (2H, d, J = 2.0 Hz), 3.98 (1H, s), 3.45 (2H, q, J = 8.0 Hz),
3.01 (3H, s), 1.35 (3H, t, J = 7.2 Hz). HRMS calcd for C₆H₁₁S⁺: 115.0576, found: 115.0574.

diethyl(prop-2-yn-1-yl)sulfonium bromide(2c)

¹H NMR (400 MHz, DMSO) δ 4.57 (2H, d, J = 2.0 Hz), 3.93 (1H, s), 3.45 (4H, q, J = 8.0 Hz), 1.33(6H, t, J = 7.2 Hz). HRMS calcd for C₇H₁₃S⁺: 129.0732, found: 129.0730.

Entry	Solvent	Base	Temp (°C)	Ratio (1a: 2a: base)	Yield (%) ^b
1	i-PrOH	DABCO	0	1: 2: 3	14%
2	MeOH: BTF (8:2)	DABCO	0	1: 2: 3	4%
3	EtOH: H ₂ O (8:2)	DABCO	0	1: 2: 3	6%
4	EtOH: BTF (8:2)	Cs ₂ CO ₃	0	1: 2: 3	Trace
5	EtOH: BTF (8:2)	Et ₃ N	0	1: 2: 3	Trace
6	EtOH: BTF (8:2)	t-BuOK	0	1: 2: 3	Trace
7	EtOH	DABCO	0	1: 5: 7	49%

Additional reaction optimization

Supplementary Table 1. Additional optimization of reaction conditions^a

^aReaction conditions unless otherwise specified: 1.0 mmol of **1a**, portionwise addition of **2a** (0.5 equiv per 0.5 h), 10 mL of solvent, 12 h, air. ^bIsolated yields.

General procedure for the synthesis of target compounds 3

To a solution of corresponding *N*-substituted pyrrole-2-carboxaldehyde 1 (1.0 mmol) in 10 mL of mixed solvent (ethanol : benzotrifluoride = 8:2) was added DABCO (7.0 mmol, 0.78 g) at 0 °C. Then sulfonium salt 2 (5.0 mmol) was successively added (once per 0.5 h, each time for 0.5 equiv), and the reaction was stirred for 12h. After completion, the reaction was filtered. The filtrate was concentrated under reduced pressure to obtain crude residue, which was purified by silica gel column chromatography (petroleum ether: ethyl acetate=100:1) to obtain product **3**.

The 2D NMR for confirmation of compounds of 3a and 3g

According to the chemical shifts and the coupling constants in ¹H NMR spectra, the signals of the key H-5, H-17, H-16 and H-11 can be identified. As shown in NOESY spectra of **3a**, correlations between H-11 and H-16, H-5 and H-17 were observed, instead of H-11 with H-17 and H-5 with H-16, which indicated that the structure can't be **3a'**. Therefore, the structure of representative product should be **3a**.

3a ¹H-¹H-COSY

3a ¹H-¹³C-HSQC

3a ¹H-¹³C-HMBC

3g ¹H-¹³C-HSQC

3g ¹H-¹H-COSY

3g ¹H-¹³C-HMBC

Characterization data for target compounds 3

(6-methyl-7-(methylthio)indolizin-5-yl)(phenyl)methanone (**3a**) Red oil, yield:188mg, 67%.

¹H NMR (400MHz, CDCl₃): δ 7.88 (2H, d, *J*=7.2Hz, H-11,15), 7.64 (1H, t, *J*=7.4Hz, H-13), 7.47 (2H, t, *J*=7.8Hz, H-12,14), 7.24 (1H, s, H-5), 6.84 (1H, s, H-3), 6.65 (1H, t, *J*=3.4Hz, H-2), 6.39 (1H, dd, *J*=4.0, 1.2Hz, H-1), 2.50 (3H, s, H-17), 2.11 (3H, s, H-16); ¹³C NMR (100MHz, CDCl₃): δ 192.9(C-9), 135.8(C-10), 135.0(C-13), 133.0(C-4), 130.4(C-8), 129.9(C-11,15), 129.5(C-12,14), 129.2(C-6), 117.4(C-7), 115.4(C-5), 114.1(C-2), 111.6(C-3), 98.3(C-1), 16.1(C-17), 15.29(C-16); HRMS calcd for C₁₇H₁₅NOS+H⁺: 282.0947, found: 282.0943.

(4-chlorophenyl)(6-methyl-7-(methylthio)indolizin-5-yl)methanone (**3b**) Red oil, yield: 205mg, 65%.

¹H NMR (500MHz, CDCl₃): δ 7.80 (2H, d, *J*=8.5Hz, H-11,15), 7.45 (2H, t, *J*=9.0Hz, H-12,14), 7.23 (1H, s, H-5), 6.80 (1H, m, H-3), 6.66 (1H, dd, *J*=4.0, 2.5Hz, H-2), 6.39 (1H, dd, *J*=4.0, 1.0Hz, H-1), 2.50 (3H, s, H-17), 2.09 (3H, s, H-16); ¹³C NMR (125MHz, CDCl₃): δ 191.6(C-9),141.7(C-13), 134.2(C-4), 133.1(C-11,15), 131.3(C-8), 130.0(C-6), 129.3(C-10), 117.7(C-7), 115.5(C-5), 114.3(C-12,14), 111.6(C-2), 100.2(C-3), 98.5(C-1), 16.1(C-17), 15.3(C-16); HRMS calcd for C₁₇H₁₄CINOS+H⁺: 316.0557, found: 316.0553.

(4-bromophenyl)(6-methyl-7-(methylthio)indolizin-5-yl)methanone (**3c**) Red oil, yield: 201mg, 56%.

¹H NMR (500MHz, CDCl₃): δ 7.73 (2H, d, *J*=8.0Hz, H-11,15), 7.62 (2H, d, *J*=8.0Hz, H-12,14),7.25 (1H, s, H-5), 6.79 (1H, s, H-3), 6.66 (1H, s, H-2), 6.40 (1H, s, H-1), 2.50 (3H, s, H-17), 2.09 (3H, s, H-16); ¹³C NMR (125MHz, CDCl₃): δ 191.8(C-9), 138.8(C-13), 135.5(C-4), 134.51(C-11,15), 133.0(C-8), 131.3(C-6), 130.6(C-10), 130.0(C-7), 117.8(C-5), 115.5(C-12,14), 114.5(C-2), 111.6(C-3), 98.7(C-1), 16.1(C-17), 15.3(C-16); HRMS calcd for C₁₇H₁₄BrNOS+H⁺: 360.0052, found: 360.0054.

(4-fluorophenyl)(6-methyl-7-(methylthio)indolizin-5-yl)methanone (3d)

Yellow oil, yield: 144mg, 48%.

¹H NMR (400MHz, CDCl₃): δ 7.90 (2H, dd, *J*=8.8, 5.2Hz, H-11,15), 7.23 (1H, s, H-5), 7.14 (2H, m, H-12,14), 6.81 (1H, s, H-3), 6.66 (1H, dd, *J*=3.6, 2.8Hz, H-2), 6.38 (1H, dd, *J*=3.6, 1.2Hz, H-1), 2.50 (3H, s, H-17), 2.10 (3H, s, H-16). ¹³C NMR (100MHz, CDCl₃) δ 191.3(C-9), 167.0 (168.3,165.7, d, *J*=256Hz, C-13), 133.0(C-4), 132.7 (132.8,132.7, d, *J*=10Hz,C-11,15), 132.2 (132.3,132.2, d, *J*=3Hz, C-8), 130.1(C-6), 129.3(C-10), 117.4(C-7), 116.9 (117.0,116.8, d, *J*=22Hz, C-5), 115.3(C-12,14), 114.3(C-2), 111.6(C-3), 98.4(C-1), 16.0(C-17), 15.2(C-16). HRMS calcd for C₁₇H₁₄FNOS+H⁺: 300.0853, found: 300.0850.

(5-methyl-7-(methylthio)indolizin-5-yl)(4-nitrophenyl)methanone (3e)

Red oil, yield: 49mg, 15%.

¹H NMR (400MHz, CDCl₃): δ 7.89 (1H, t, *J*=2.0Hz, H-14), 7.67 (1H, d, *J*=8.0Hz, H-12), 7.61 (1H, dd, *J* =8.0, 1.2Hz, H-15), 7.40 (1H, t, *J*=8.0Hz, H-11), 7.25 (1H, s, H-5), 6.82 (1H,

d, *J*=1.2Hz, H-3), 6.66 (1H, dd, *J*= 4.0, 2.8Hz, H-2), 6.40 (1H, dd, *J*=3.8, 1.2Hz, H-1), 2.50 (3H, s, H-17), 2.10 (3H, s, H-16); ¹³C NMR (100MHz, CDCl₃): δ 191.4(C-9), 137.3(C-13), 135.7(C-4), 134.7(C-11,15), 132.8(C-8), 130.7(C-6), 129.2(C-10), 127.9(C-7), 117.7(C-5), 115.5(C-12,14), 114.2(C-2), 111.4(C-3), 98.4(C-1), 15.9(C-17), 15.1(C-16); HRMS calcd for C₁₇H₁₄N₂O₃S+H⁺: 327.0798, found: 327.0795.

(6-methyl-7-(methylthio)indolizin-5-yl)(p-tolyl)methanone (3f)

Red oil, yield: 180mg, 61%.

¹H NMR (500MHz, CDCl₃): δ 7.79 (2H, d, *J*=8.0Hz, H-11,15), 7.29 (2H, d, *J*=7.5Hz, H-12,14), 7.25 (1H, s, H-5), 6.86 (1H, s, H-3), 6.67 (1H, t, *J*=3.5Hz, H-2), 6.40 (1H, d, *J*=4.0Hz, H-1), 2.52 (3H, s, H-17), 2.45 (3H, s, CH₃-C13), 2.13 (3H, s, H-16); ¹³C NMR (125MHz, CDCl₃): δ 192.5(C-9), 146.3(C-13), 133.3(C-4), 133.0(C-11,15), 130.7(C-8), 130.3(C-6), 130.0(C-10), 129.2(C-7), 117.1(C-5), 115.1(C-12,14), 114.1(C-2), 111.6(C-3), 98.2(C-1), 22.1(C-13), 16.1(C-17), 15.2(C-16); HRMS calcd for C₁₈H₁₇NOS+H⁺: 296.1104, found: 296.1103.

(4-methoxyphenyl)(6-methyl-7-(methylthio)indolizin-5-yl)methanone (3g)

Red oil, yield: 121mg, 39%.

¹H NMR (500MHz, CDCl₃): δ 7.85 (2H, d, *J*=8.0Hz, H-11,15), 7.21 (1H, s, H-5), 6.93 (2H, d, *J*=8.5Hz, H-12,14), 6.84 (1H, s, H-3), 6.64 (1H, t, *J*=3.5Hz, H-2), 6.36 (1H, d, *J*=3.5Hz, H-1), 3.87 (3H, s, H-18), 2.49 (3H, s, H-17), 2.10 (3H, s, H-16); ¹³C NMR (125MHz, CDCl₃): δ 191.3(C-9), 165.2(C-13), 133.0(C-4), 132.5(C-11,15), 130.8(C-8), 129.3(C-6),

128.8(C-10), 116.8(C-7), 114.9(C-5), 114.8(C-12,14), 114.1(C-2), 111.6(C-3), 98.1(C-1), 55.9(C-18), 16.0(C-17), 15.2(C-16); HRMS calcd for C₁₈H₁₇NO₂S+H⁺: 312.1053, found: 312.1050.

(3-chlorophenyl)(6-methyl-7-(methylthio)indolizin-5-yl)methanone (**3h**) Red oil, yield: 123mg, 39%.

¹H NMR (500MHz, DMSO): δ 7.86 (1H, m, H-15), 7.84 (1H, d, J = 1.5Hz, H-11), 7.66 (1H, dt, J = 8.0, 1.5Hz, H-13), 7.62-7.59 (1H, m, H-12), 7.41 (1H, s, H-5), 6.90-6.89 (1H, m, H-3), 6.67 (1H, dd, J = 4.0, 3.0Hz, H-2), 6.42 (1H, dd, J = 4.0, 1.5 Hz, H-1), 2.53 (3H, s, H-17), 2.00 (3H, s, H-16); ¹³C NMR (125MHz, CDCl₃): δ 191.4(C-9), 137.3(C-14), 135.7(C-10), 134.7(C-4), 130.7(C-13), 129.5(C-8), 129.2(C-15), 128.7(C-12), 127.9(C-11), 117.7(C-6), 115.5(C-7), 114.2(C-5), 111.4(C-2), 98.4(C-3), 97.4(C-1), 15.9(C-17), 15.1(C-16); HRMS calcd for C₁₇H₁₄CINOS+H⁺: 316.0557, found: 316.0554.

(3-methoxyphenyl)(6-methyl-7-(methylthio)indolizin-5-yl)methanone (**3i**) Red oil, yield: 215mg, 69%.

¹H NMR(400M Hz, CDCl₃): δ 7.52 (1H, d, *J*=1.2Hz, H-15), 7.36-7.32(2H, m, H-11,14), 7.23(1H, s, H-5), 7.19-7.17 (1H, m, H-13), 6.84 (1H, d, *J*=0.8Hz, H-3), 6.65 (1H, dd, *J*=3.6, 2.8Hz, H-2), 6.37 (1H, dd, *J*=4.0, 1.2Hz, H-1), 3.86 (3H, s, H-18), 2.49 (3H, s, H-17), 2.10 (3H, s, H-16); ¹³C NMR (100MHz, CDCl₃): δ 192.8(C-9), 160.6(C-12), 137.2(C-10), 133.1(C-4), 130.6(C-8), 129.2(C-14), 123.0(C-15), 121.8(C-13), 117.4(C-11), 115.4(C-6), 114.2(C-7), 113.2(C-5), 111.7(C-2), 100.2(C-3), 98.3(C-1), 55.8(C-18), 16.1(C-17), 15.27(C-16); HRMS calcd for C₁₈H₁₇NO₂S+H⁺: 312.1053, found: 312.1055.

(2-chlorophenyl)(6-methyl-7-(methylthio)indolizin-5-yl)methanone (**3j**) Red oil, yield: 224mg, 71%.

¹H NMR (500MHz, CDCl₃): δ 7.63 (1H, d, *J*=10.0Hz, H-11), 7.51-7.46 (2H, m, H-14), 7.35-7.31 (1H, m, H-13), 7.28 (1H, s, H-5), 7.07 (1H, d, *J*=1.5Hz, H-3), 6.68 (1H, dd, *J*=4.0, 3.5Hz, H-2), 6.40 (1H, dd, *J*=4.5,1.0Hz, H-1), 2.48 (3H, s, H-17), 2.13 (3H, s, H-16); ¹³C NMR(125MHz, CDCl₃): δ 191.3(C-9), 136.6(C-15), 134.0(C-8), 133.9(C-13), 133.2(C-4), 131.9(C-10), 131.8(C-14), 131.1(C-11), 129.1(C-12), 127.7(C-6), 120.0(C-7), 116.8(C-5), 114.3(C-2), 112.2(C-3), 98.8(C-1), 16.2(C-17), 15.3(C-16); HRMS calcd for C₁₇H₁₄CINOS+H⁺: 316.0557, found: 316.0555.

(2-methoxyphenyl)(6-methyl-7-(methylthio)indolizin-5-yl)methanone (**3k**) Red oil, yield: 149mg, 48%.

¹H NMR (400MHz, CDCl₃): δ 7.80 (1H, dd, *J*=8.0, 1.6Hz, H-11), 7.55 (1H, t, *J*=7.0Hz, H-13), 7.20 (1H, s, H-5), 7.03 (1H, t, *J*=7.6Hz, H-12), 6.95 (1H, d, *J*=8.4Hz, H-14), 6.91 (1H, d, *J*=1.2Hz, H-3), 6.62 (1H, dd, *J*=4.0, 2.8Hz, H-2), 6.34 (1H, dd, *J*=3.6,1.2Hz, H-1), 3.58 (3H, s, H-18), 2.47 (3H, s, H-17), 2.13 (3H, s, H-16); ¹³C NMR (100MHz, CDCl₃): δ 191.1(C-9), 160.5(C-15), 135.8(C-13), 133.4(C-4), 133.0(C-8), 132.2(C-11), 129.3(C-12), 126.5(C-14), 121.3(C-10), 116.7(C-6), 115.3(C-7), 113.7(C-5), 112.7(C-2), 111.4(C-3), 98.0(C-1), 56.3(C-18), 16.3(C-17), 15.0(C-16); HRMS calcd for C₁₈H₁₇NO₂S+H⁺: 312.1053, found: 312.1055.

(6-methyl-7-(methylthio)indolizin-5-yl)(thiophen-2-yl)methanone (**3l**) Red oil, yield: 118mg, 41%.

¹H NMR (500MHz, CDCl₃): δ 7.81 (1H, dd, *J*=5.0, 1.0Hz, H-13), 7.50 (1H, dd, *J*=3.5, 0.5Hz, H-11), 7.22 (1H, s, H-5), 7.11-7.09 (1H, m, H-12), 7.01 (1H, m, H-3), 6.70 (1H, dd, *J*=3.5, 2.5Hz, H-2), 6.40 (1H, dd, *J*=4.0, 1.5Hz, H-1), 2.52(3H, s, H-17), 2.20 (3H, s, H-16); ¹³C NMR (125MHz, CDCl₃): δ 184.6(C-9), 143.1(C-10), 136.8(C-4), 135.7(C-13), 132.9(C-11), 130.2(C-8), 128.9(C-12), 128.9(C-6), 117.0(C-7), 115.3(C-5), 113.9(C-2), 111.4(C-3), 98.2(C-1), 15.9(C-17), 15.3(C-16); HRMS calcd for C₁₅H₁₃NOS₂+H⁺: 288.0511, found: 288.0512.

furan-2-yl(6-methyl-7-(methylthio)indolizin-5-yl)methanone (**3m**)

Red oil, yield: 133mg, 49%.

¹H NMR (400MHz, CDCl₃): δ 7.71 (s, 1H, H-13), 7.22 (s, 1H, H-5), 7.16 (d, *J*=3.6Hz, 1H, H-11), 7.00 (s, 1H, H-3), 6.70–6.67 (m, 1H, H-12), 6.57 (dd, *J*=3.6, 2.0Hz, 1H, H-2), 6.38 (dd, *J*=3.6, 0.8Hz, 1H, H-1), 2.48 (s, 3H, H-17), 2.16 (s, 3H, H-16); ¹³C NMR (100MHz, CDCl₃): δ 179.2(C-9), 152.1(C-10), 148.8(C-4), 132.8(C-13), 129.5(C-8), 128.9(C-11), 121.9(C-12), 117.9(C-6), 115.7(C-7), 113.9(C-5), 113.1(C-2), 111.3(C-3), 98.3(C-1), 15.9(C-17), 15.2(C-16); HRMS calcd for C₁₅H₁₃NO₂S+H⁺: 272.0740, found: 272.0735.

1-(6-methyl-7-(methylthio)indolizin-5-yl)ethenone (3p)

Yellow oil, yield: 72mg, 33%.

¹H NMR (500MHz, CDCl₃): δ 7.18 (1H, s, H-5), 7.04 (1H, m, H-3), 6.75 (1H, dd, *J*=3.5Hz, 2.5Hz, H-2), 6.39 (1H, dd, *J*=3.5, 1.0Hz, H-1), 2.63 (3H, s, H-COCH3), 2.46 (3H, s, H-17), 2.23 (3H, s, H-16); ¹³C NMR (125MHz, CDCl₃): δ 199.5(C-9), 132.9(C-4), 132.5(C-8), 129.1(C-6), 116.0(C-7), 115.4(C-5), 114.3(C-2), 110.7(C-3), 98.5(C-1), 30.6(C-10), 16.0(C-17), 14.7(C-16); HRMS calcd for C₁₂H₁₃NOS+H⁺: 220.0791, found: 220.0794.

2, 2-dimethyl-1-(6-methyl-7-(methylthio)indolizin-5-yl)propan-1-one (**3q**) Yellow oil, yield: 76mg, 29%.

¹H NMR (500MHz, CDCl₃): δ 7.10 (1H, s, H-5), 6.80 (1H, m, H-3), 6.71 (1H, dd, *J*=4.0, 3.0Hz, H-2), 6.35 (1H, dd, *J*=3.5, 1.0Hz, H-1), 2.46 (3H, s, H-17), 2.13 (3H, s, H-16), 1.29 (9H, s, H-C₃H₉); ¹³C NMR (125MHz, CDCl₃): δ 211.0(C-9), 132.9(C-4), 132.4(C-8), 129.4(C-6), 114.2(C-7), 114.1(C-5), 113.9(C-2), 111.1(C-3), 98.2(C-1), 46.0(C-10), 27.8(C-C₃H₉), 15.9(C-17), 15.8(C-16); HRMS calcd for C₁₅H₁₉NOS+H⁺: 262.1260, found: 262.1265.

 $(7-(ethylthio)-6-methylindolizin-5-yl)(phenyl)methanone \ (3r/3s)$

Red oil, yield: 150mg, 51%/127mg, 43%.

¹H NMR (500MHz, CDCl₃): δ 7.87 (2H, d, *J*=7.0Hz, H-11,15), 7.64 (1H, t, *J*=7.5Hz, H-13), 7.48 (2H, t, *J*=7.5Hz, H-12,14), 7.44 (1H, s, H-5), 6.86 (1H, s, H-3), 6.66 (1H, s, H-2), 6.42 (1H, s, H-1), 2.92 (2H, q, *J*=7.0Hz, H-17), 2.13 (3H, s, H-16), 1.38 (3H, t, *J*=7.5Hz, H-19); ¹³C NMR (125MHz, CDCl₃): δ 192.7(C-9), 135.6(C-13), 134.8(C-4), 132.6(C-11,15), 130.3(C-8), 129.7(C-6), 129.3(C-10), 126.6(C-7), 119.3(C-5), 118.4(C-12,14), 114.1(C-2),

111.8(C-3), 98.7(C-1), 27.8(C-19), 15.5(C-17), 13.9(C-16); HRMS calcd for C₁₈H₁₇NOS+H⁺: 296.1104, found: 296.1101.

Procedure for the synthesis of derived compound (6-methyl-7-(methylsulfinyl)indolizin-5yl)(phenyl)methanone (4)

To a solution of 3a (0.2 mmol, 50 mg) in 10 mL of dichloromethane, *m*-CPBA (0.8 mmol, 136mg) was added in portions (0.2 mmol each time) at 0° C, and then the reaction was stirred at room temperature for 2 h. After completion, the reaction solution was concentrated under reduced pressure to obtain a crude residue, which was purified by silica gel column chromatography (petroleum ether: dichloromethane=1:2) to obtain product 4.

Yellow solid, yield: 38mg, 72%.

¹H NMR (400 MHz, CDCl₃) δ 8.17 (1H · s, H-5), 7.85 (2H, d, J = 7.3 Hz), 7.67 (1H, t, J = 7.4 Hz, H-11,15), 7.50 (2H, t, J = 7.8 Hz, H-12,14), 7.01 (1H, s, H-3), 6.80 – 6.78 (1H · m, H-2), 6.73 (1H · d, J = 3.2 Hz, H-1), 2.78 (3H · s, H-17), 2.11 (3H, s, H-16); ¹³C NMR (100 MHz, CDCl₃) δ 191.0(C-9), 134.1(C-13), 133.1(C-4), 130.8(C-11,15), 129.7(C-8), 128.7(C-6), 128.5(C-10), 128.5(C-7), 116.0(C-5), 114.4(C-12,14), 112.9(C-2), 112.3(C-3), 102.2(C-1), 42.0(C-17), 12.6(C-16); HRMS calcd for C₁₇H₁₅NO₂S+H⁺: 298.0896, found: 298.0899.

¹H and ¹³C NMR Spectra of target compounds 3

--2.503 --2.095

-7.177 -7.043 -7.043 6.389 6.384 6.381

2.629 2.462 2.230

