Synthesis of functional tetrathiafulvalene-terpyridine dyad for Metal Cation Recognition

Wenhao Zhang,^a Thomas Blin,^a Antoine Busseau,^b Sagrario Pascual,^a Abdelkrim El-Ghayoury,^b Stéphanie Legoupy,^{*,b} Sandie Piogé^{*,a}

a Institut des Molécules et Matériaux du Mans, IMMM UMR 6283 CNRS – Le Mans Université, Avenue Olivier Messiaen, Le Mans 72085 Cedex 9, France. E-mail: sandie.pioge@univ-lemans.fr

b Univ Angers, CNRS, MOLTECH-ANJOU, F-49000 Angers, France. E-mail: <u>stephanie.legoupy@univ-angers.fr</u>

Table of contents

Figure S1 : ¹ H NMR spectrum in CDCl ₃ of 3	2
Figure S2 : ¹³ C NMR spectrum in CDCl ₃ of 3	3
Figure S3 : ¹ H NMR spectrum in CDCl ₃ of 4	4
Figure S4 : ¹³ C NMR spectrum in CDCl ₃ of 4	5
Figure S5 : ¹ H NMR spectrum in CDCl ₃ of 5	6
Figure S6 : ¹³ C NMR spectrum in CDCl ₃ of 5	7
Figure S7 : ¹ H NMR spectrum in CDCl ₃ of 6	8
Figure S8 : ¹³ C NMR spectrum in CDCl ₃ of 6	9
Figure S9 : ¹ H NMR spectrum in CDCl ₃ of 1	10
Figure S10 : 13 C NMR spectrum in CDCl ₃ of 1	11
Figure S11 : UV-Visible experiment of dyad 1 (10 ⁻⁵ M) in CH_2Cl_2/CH_3CN (1/1, v/v)	12
Figure S12 : CV experiment of dyad 1 (10 ⁻³ M) in CH_2CI_2/CH_3CN (1/1, v/v); 100 mV/s, nBu_4BF_6 (10 ⁻¹ M), vs Ag/AgCl, (vs Fc/Fc ⁺)	12
Figure S13 : UV-Visible titration experiment of dyad 1 (10 ⁻⁵ M) in CH_2Cl_2/CH_3CN (1/1, v/v) in presence of $Fe(ClO_4)_2$	13
Figure S14 : Color evolution before (left) and after (right) the titration of dyad 1 (10 ⁻⁵ M) in presence of 2 eq $Fe(ClO_4)_2$ in CH_2Cl_2/CH_3CN (1/1, v/v)	13
Figure S15 : CV titration experiment of dyad 1 (10 ⁻³ M) in CH ₂ Cl ₂ /CH ₃ CN (1/1, v/v) in presence of Fe(ClO ₄) ₂ ; 100 mV/s, nBu_4BF_6 (10 ⁻¹ M), vs Ag/AgCl, (vs Fc/Fc ⁺)	13
Figure S16 : Further study of UV-Visible titration of dyad 1 (10 ⁻⁵ M) in CH_2CI_2/CH_3CN (1/1, v/v) in presence of Pb(ClO ₄) ₂	14
Figure S17 : Further study of UV-Visible titration of dyad 1 (10 ⁻⁵ M) in CH_2CI_2/CH_3CN (1/1, v/v) in presence of Fe(ClO ₄) ₂	14
Figure S18 : Further study of UV-Visible titration of dyad 1 (10 ⁻⁵ M) in CH_2CI_2/CH_3CN (1/1, v/v) in presence of $Zn(CIO_4)_2$	14

Figure S1 : ¹H NMR spectrum in CDCl₃ of 3.

Figure S4 : ¹³C NMR spectrum in CDCl₃ of 4.

Figure S8 : $^{\rm 13}{\rm C}$ NMR spectrum in CDCl3 of 6.

Figure S11 : UV-Visible experiment of dyad 1 (10⁻⁵ M) in CH₂Cl₂/CH₃CN (1/1, v/v).

Figure S12 : CV experiment of dyad 1 (10⁻³ M) in CH₂Cl₂/CH₃CN (1/1, v/v); 100 mV/s, *n*Bu₄BF₆ (10⁻¹ M), vs Ag/AgCl, (vs Fc/Fc⁺).

Figure S13 : UV-Visible titration experiment of dyad 1 (10⁻⁵ M) in CH₂Cl₂/CH₃CN (1/1, v/v) in presence of Fe(ClO₄)₂.

Figure S14 : Color evolution before (left) and after (right) titration of dyad 1 (10^{-5} M) in presence of 2 equiv. Fe(ClO₄)₂ in CH₂Cl₂/CH₃CN (1/1, v/v).

Figure S15 : CV titration experiment of dyad 1 (10^{-3} M) in CH₂Cl₂/CH₃CN (1/1, v/v) in presence of Fe(ClO₄)₂; 100 mV/s, *n*Bu₄BF₆ (10^{-1} M), vs Ag/AgCl, (vs Fc/Fc⁺).

Figure S16 : Further study of UV-Visible titration of dyad 1 (10-5 M) in CH₂Cl₂/CH₃CN (1/1, v/v) in presence of Pb(ClO₄)₂

Figure S17 : Further study of UV-Visible titration of dyad 1 (10⁻⁵ M) in CH₂Cl₂/CH₃CN (1/1, v/v) in presence of Fe(ClO₄)₂

Figure S18 : Further study of UV-Visible titration of dyad 1 (10^{-5} M) in CH₂Cl₂/CH₃CN (1/1, v/v) in presence of Zn(ClO₄)₂