Electronic Supplementary Information

When crown ethers finally click: novel, click-assembled, fluorescent enantiopure pyridino-crown ether-based chemosensors – and an N-2-aryl-1,2,3-triazole containing one

Balázs Szemenyei,^a Mira Malmosi,^a Dávid Pál,^a Péter Baranyai,^b László Drahos,^c Ildikó Móczár^{*a} and Péter Huszthy^{*a}

^aDepartment of Organic Chemistry and Technology, Budapest University of Technology and Economics, PO Box 91, H-1521 Budapest, Hungary

^bWigner Research Centre for Physics, PO Box 49, H-1525 Budapest, Hungary

^cInstitute of Organic Chemistry, Research Centre for Natural Sciences, PO Box 286, H-1519 Budapest, Hungary

*Corresponding authors. E-mail: moczar.ildiko@vbk.bme.hu, huszthy.peter@vbk.bme.hu

Table of contents

¹ H and ¹³ C NMR spectra of (<i>S</i> , <i>S</i>)- 1 –(<i>S</i> , <i>S</i>)- 4 and (<i>S</i> , <i>S</i>)- 6 –(<i>S</i> , <i>S</i>)- 8	S2
Evaluation of 2D NMR spectra of (<i>S,S</i>)- 1– (<i>S,S</i>)- 3	S17

Figure S1. ¹H NMR spectrum of (*S*,*S*)-**1** (acetone- d_6 , 500 MHz)

Figure S2. ¹³C NMR spectrum of (*S*,*S*)-1 (acetone- d_6 , 75.5 MHz)

Figure S3. ¹H NMR spectrum of (*S*,*S*)-2 (CDCl₃, 500 MHz)

Figure S4. ¹³C NMR spectrum of (*S*,*S*)-2 (CDCl₃, 125 MHz)

Figure S5A. ¹H NMR spectrum of (*S*,*S*)-**3** (CD₃CN, 500 MHz)

Figure S5B. Parts of the ¹H NMR spectrum of (S,S)-3 (CD₃CN, 500 MHz)

Figure S6. ¹³C NMR spectrum of (*S*,*S*)-3 (CD₃CN, 125 MHz)

Figure S7. ¹H NMR spectrum of (*S*,*S*)-4 (CDCl₃, 500 MHz)

S9

Figure S9. ¹H NMR spectrum of (*S*,*S*)-6 (CDCl₃, 300 MHz)

Figure S10. ¹³C NMR spectrum of (*S*,*S*)-**6** (CDCl₃, 75.5 MHz)

Figure S11. ¹H NMR spectrum of (*S*,*S*)-7 (CDCl₃, 500 MHz)

S13

Figure S12. ¹³C NMR spectrum of (*S*,*S*)-**7** (CDCl₃, 75.5 MHz)

Figure S13. ¹H NMR spectrum of (*S*,*S*)-8 (CDCl₃, 300 MHz)

Figure S14. ¹³C NMR spectrum of (*S*,*S*)-**8** (CDCl₃, 75.5 MHz)

Evaluation of 2D NMR spectra of (S,S)-1-(S,S)-3

2D ROESY and HMBC spectra were recorded for further support of structures (*S*,*S*)-**1**–(*S*,*S*)-**3**. The ROESY spectrum of ligand (*S*,*S*)-**2** showed a cross-peak between the triazole proton (8.25 ppm) and pyridine proton (7.71 ppm). Similarly, the triazole proton (8.82 ppm) and pyridine proton (7.77 ppm) of ligand (*S*,*S*)-**3** gave a ROE signal. These interactions could not be detected for the corresponding 1,5-isomers.

Figure S15. Parts of the structures of sensor molecules (*S*,*S*)-**1**–(*S*,*S*)-**3** with proton and carbon signal values (ppm) used for verifying the structures by 2D NMR techniques

In the case of ligand (*S*,*S*)-**1**, a ROE signal between the triazole proton (9.09 ppm) and phenyl proton (7.88 ppm) as well as the absence of a cross-peak between the pyridine proton (7.87 ppm) and phenyl proton (7.88 ppm) would support structure (*S*,*S*)-**1** and exclude its 1,5-isomer, but due to the very similar chemical shifts (7.87 and 7.88 ppm), these interactions could not be evaluated. Therefore, a HMBC spectrum was recorded. A weak HMBC signal between

the triazole proton (9.09 ppm) and phenyl carbon (131.34 ppm) confirmed structure (*S*,*S*)-**1**, because this correlation would not be expected for its 1,5-isomer through a four-bond distance. Furthermore, the predicted chemical shifts (by ACD/Spectrus software) for the triazole carbons of (*S*,*S*)-**1** are 121.96 ppm (C5) and 146.70 ppm (C4), in contrast to 134.28 ppm (C5) and 141.32 ppm (C4) for its 1,5-isomer. Thus, the corresponding measured values of 121.41 ppm (C5) and 146.63 ppm (C4) also suggest structure (*S*,*S*)-**1**.