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Figure S1. 1H NMR spectrum of (S,S)-1 (acetone-d6, 500 MHz) 
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Figure S2. 13C NMR spectrum of (S,S)-1 (acetone-d6, 75.5 MHz) 
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Figure S3. 1H NMR spectrum of (S,S)-2 (CDCl3, 500 MHz) 
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Figure S4. 13C NMR spectrum of (S,S)-2 (CDCl3, 125 MHz) 
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Figure S5A. 1H NMR spectrum of (S,S)-3 (CD3CN, 500 MHz) 
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Figure S5B. Parts of the 1H NMR spectrum of (S,S)-3 (CD3CN, 500 MHz) 
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Figure S6. 13C NMR spectrum of (S,S)-3 (CD3CN, 125 MHz) 
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Figure S7. 1H NMR spectrum of (S,S)-4 (CDCl3, 500 MHz) 
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Figure S8. 13C NMR spectrum of (S,S)-4 (CDCl3, 125 MHz) 
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Figure S9. 1H NMR spectrum of (S,S)-6 (CDCl3, 300 MHz) 
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Figure S10. 13C NMR spectrum of (S,S)-6 (CDCl3, 75.5 MHz) 
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Figure S11. 1H NMR spectrum of (S,S)-7 (CDCl3, 500 MHz) 
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Figure S12. 13C NMR spectrum of (S,S)-7 (CDCl3, 75.5 MHz) 
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Figure S13. 1H NMR spectrum of (S,S)-8 (CDCl3, 300 MHz) 
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Figure S14. 13C NMR spectrum of (S,S)-8 (CDCl3, 75.5 MHz)
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Evaluation of 2D NMR spectra of (S,S)-1–(S,S)-3 

2D ROESY and HMBC spectra were recorded for further support of structures (S,S)-1–(S,S)-3. 

The ROESY spectrum of ligand (S,S)-2 showed a cross-peak between the triazole proton (8.25 

ppm) and pyridine proton (7.71 ppm). Similarly, the triazole proton (8.82 ppm) and pyridine 

proton (7.77 ppm) of ligand (S,S)-3 gave a ROE signal. These interactions could not be detected 

for the corresponding 1,5-isomers. 

 

Figure S15. Parts of the structures of sensor molecules (S,S)-1–(S,S)-3 with proton and carbon 
signal values (ppm) used for verifying the structures by 2D NMR techniques 

In the case of ligand (S,S)-1, a ROE signal between the triazole proton (9.09 ppm) and 

phenyl proton (7.88 ppm) as well as the absence of a cross-peak between the pyridine proton 

(7.87 ppm) and phenyl proton (7.88 ppm) would support structure (S,S)-1 and exclude its 1,5-

isomer, but due to the very similar chemical shifts (7.87 and 7.88 ppm), these interactions could 

not be evaluated. Therefore, a HMBC spectrum was recorded. A weak HMBC signal between 
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the triazole proton (9.09 ppm) and phenyl carbon (131.34 ppm) confirmed structure (S,S)-1, 

because this correlation would not be expected for its 1,5-isomer through a four-bond distance. 

Furthermore, the predicted chemical shifts (by ACD/Spectrus software) for the triazole carbons 

of (S,S)-1 are 121.96 ppm (C5) and 146.70 ppm (C4), in contrast to 134.28 ppm (C5) and 141.32 

ppm (C4) for its 1,5-isomer. Thus, the corresponding measured values of 121.41 ppm (C5) and 

146.63 ppm (C4) also suggest structure (S,S)-1. 


