Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

Acceptor-donor-acceptor-linked triphenylamine and phenothiazine motifs as cousin molecules: Methyl-effect on stimuli-responsiveness, crystallochromism and dual-state emission

Shouvik Bhuin,^a Suman Bhattacharya^b and Manab Chakravarty^a*

^aDepartment of Chemistry, BITS-Pilani Hyderabad campus, Jawaharnagar, Hyderabad-500078, Telangana, India;

^bDepartment of Chemistry, University of Malta, Msida, Malta

Table of content

Торіс	Page No.
Scheme S1 Plaussible mechanistic path for MTPADCA and MPTZDCA	3
Scheme S2 Plaussible mechanistic path for TPADCA and PTZDCA (newly proposed)	4
Table S1 Reaction Optimization	5
Fig. S1 Solution state (a) absorption & (b) normalized emission spectra for MTPADCA	6
Fig. S2 Solution state (a) absorption & (b) normalized emission spectra for TPADCA	6
Table S2 Comparison Table of emission in solution state for MTPADCA & TPADCA	7
Fig. S3 Solvatofluorochromic behavior for MTPADCA & TPADCA	7
Fig. S4 Solid state absorption spectra for TPA cousin molecules	8
Fig. S5 Solid state absorption spectra for PTZ cousin molecules	8
Fig. S6 Solution state (a) absorbance & (b) emission of MPTZDCA	8
Fig. S7 Solution state (a) absorbance &(b) emission of PTZDCA	9
Fig. S8 Solvatofluorochromic behavior for MPTZDCA & PTZDCA	9
Table S3 Comparison Table of emission in solution state for MPTZDCA & PTZDCA	9

Table S4 HOMO and LUMO for MTPADCA and TPADCA obtained from DFT studies	10
with CAMB3LYP 6-31g (d,p) basis set	
Fig. S9 Fluorescence spectra of MTPADCA under stimuli & MIEE effect of TPADCA	10
Fig. S10 PXRD pattern of TPADCA at pristine and ground state	10
Table S5. Intermolecular interactions in MPTZDCA & PTZDCA crystals	11
Fig. S11 IR comparison of MTPADCA & TPADCA	11
Fig. S12 PXRD pattern of MPTZDCA & PTZDCA	11
Fig. S13 PXRD pattern of (a) MPTZDCA & (b) PTZDCA after grinding the sample	12
Fig. S14 IR comparison of MPTZDCA & PTZDCA	12
Fig. S15 (a) DSC and (b) DTA thermogram for MTPADCA	12
Table S6 Crystal Data Table	13
Table S7 Lifetime data and the related parameters. $K_r = \Phi_f / \tau$; $K_{nr} = (1 - \Phi_f) / \tau_f$	14
Fig. S16 Life time Decay profiles	14-15
NMR & HR-MS Spectra	16-23
References	23

Scheme S1 Plaussible mechanistic path for MTPADCA and MPTZDCA¹

Scheme S2 Plaussible mechanistic path for TPADCA and PTZDCA (newly proposed)

Table S1 Reaction Optimization

Entry	R	Solvent	Base	Time(h)	Methylated Pdt. (%)	Non- methylated Pdt. (%)
1	TPA	EtOH:H ₂ O (6:1)	Et ₃ N	1.5	45	12
2	TPA	EtOH:H ₂ O (6:1)	NaOH	1.5	42	52
3	TPA	EtOH:H ₂ O (6:1)	KO ^t Bu	1.5	18	55
4	TPA	EtOH:H ₂ O (6:1)	K ₂ CO ₃	1.5	12	17
5	TPA	EtOH:H ₂ O (6:1)	NH ₄ OAc	1.5	Trace	15
6	TPA	EtOH:H ₂ O (6:1)	Pipyridine	1.5	22	Trace
7	TPA	Toluene	Et ₃ N	2.5	0	0
8	TPA	Toluene	NaOH	2.5	0	0
9	TPA	Toluene	Pipyridine	2.5	0	0
10	TPA	Toluene	Pyrrolidine	2.5	Trace	20
11	TPA	Acetonitrile	Pyrrolidine	2.5	Trace	Trace

Fig. S1 Solution state (a) absorption & (b) normalized emission spectra for MTPADCA (10⁻⁵ M)

Fig. S2 Solution state (a) absorption & (b) normalized emission spectra for TPADCA (10⁻⁵ M)

Solvent	λ_{abs} (nm)	λ_{abs} (nm)	$\lambda_{em.}$ (nm)	$\lambda_{em.}$ (nm)	Relative	Relative $\Phi_{\rm f}$ *
$[E_{\rm T}(30)]$	TPADCA	MTPADCA	TPADCA	MTPADCA	$\Phi_{\rm f}$ * (%)	(%)
					TPADCA	MTPADCA
Hexane	368	374	431	428	35	37
(31)						
1,4-	364	376	475	463	28	27
Dioxane						
(36)						
THF (37.4)	335	376	522	484	26	23
EtOAc	329	373	528	489	26	25
(38.1)						
CHCl ₃	377	385	479	478	24	20
(39.1)						
DCM	370	379	501	497	25	24
(39.6)						
MeCN	328	372	564	530	31	29
(45.6)						

Table S2 Comparison Table of emission in solution state for MTPADCA & TPADCA

*Relative Φ_f (Relative quantum yield) is calculated using coumarin-53B as a reference.

Fig. S3 Solvatofluorochromic behavior for MTPADCA: (a)-(c) and TPADCA: (d)-(f)

Fig. S4 Solid state absorption spectra for TPA cousin molecules

Fig. S5 Solid state absorption spectra for PTZ cousin molecules

Fig. S6 Solution state (a) absorbance & (b) emission of MPTZDCA (10^{-5} M)

Fig. S7 Solution state (a) absorbance & (b) emission of PTZDCA (10⁻⁵ M)

Fig. S8 Solvatofluorochromic behavior for MPTZDCA: (a)-(c) and PTZDCA: (d)-(f)

Table S3 Comparison Table of emission in solution state for MPTZDCA & PTZDCA; the relative quantum yields (Φ_f) are reported here with a standard of coumarin-53B as a reference

Solvent	λ_{abs} . (nm)	λ_{abs} . (nm)	$\lambda_{\rm em.} (\rm nm)$	$\lambda_{\rm em.}$ (nm)	Relative	Relative $\Phi_{\rm f}$
$(E_T 30)$	PTZDCA	MPTZDCA	PTZDCA	MPTZADCA	$\Phi_{\rm f}$ (%)	(%)
					PTZDCA	MPTZDCA
Hexane (31)	322	375	507	494	27	9
1,4-Dioxane	326	366	539	415	81	7
(36)						
THF (37.4)	328	370	547	432	54	6
EtOAc (38.1)	327	372	445	553	44	7
CHCl ₃ (39.1)	323	377	434	557	15	6

DCM (39.6)	324	370	440	569	17	6
MeCN (45.6)	323	390	457	459	21	10

Table S4 HOMO and LUMO for **MTPADCA** and **TPADCA** obtained from DFT studies with CAMB3LYP 6-31g (d,p) basis set

Molecules	Dipole	HOMO (eV)	LUMO (eV)	Gap (eV)	λ_{abs}	λemi
	moment					
	(D)					
MTPADCA	4.482	-6.774001926	-1.045733486	5.73	442	501
-						
TPADCA	4.5698	-6.814819002	-1.138252192	5.68	471	578

Fig. S9 Fluorescence spectra of (a) MTPADCA under stimuli $\lambda_{ex} = 442$ nm (b) MIEE- effect of TPADCA; $\lambda_{ex} = 471$ nm

Fig. S10 PXRD pattern of TPADCA at pristine and ground state

Table S5 Intermolecular interactions in MTPADCA, TPADCA & MPTZDCA crystals

Fig. S12 PXRD pattern of MPTZDCA & PTZDCA

Fig. S13 PXRD pattern of (a) MPTZDCA & (b) PTZDCA after grinding the sample.

Fig. S14 IR comparison of MPTZDCA & PTZDCA

Fig. S15 (a) DSC and (b) DTA thermogram for MTPADCA

Explanation: As we found a quick emission color change starting at 155 °C, we closely observed the DSC feature around the temperature range (Fig. S15a). A clear endothermic peak at ~160 °C is recognized in the DSC thermogram, which indicates a phase transition and is possibly associated with the TFC behavior. The DSC thermogram does not show a sharp melting transition, implying that the compound loses crystallinity after the initial phase transition. Although a small signature appears at ~207 °C in the DSC profile, a sharp melting point at 207 °C is detected in the DTA (Differential Thermal Analysis) thermogram (Fig. S15b).

Compounds	MTPADCA	TPADCA	MPTZDCA
Emp. Formula	$C_{27}H_{20}N_4$	C ₂₆ H ₁₈ N ₄	$C_{26}H_{24}N_4S$
Formula weight	400.47	386.44	424.55
Crystal system	monoclinic	monoclinic	Triclinic
Space group	$P2_{1}/c$	$P2_1/c$	P -1
<i>a</i> /Å	10.1248(2)	17.0172(3)	8.9131(4)
b /Å	9.8792(2)	14.7978(3)	11.8184(4)
c /Å	21.3435(3)	8.29705(16)	21.8914(9)
/degree	90	90	91.003(3)
/degree	97.401(2)	98.9384(18)	95.825(4)
/degree	90	90	106.344(4)
V/Å ³	2117.10(7)	2063.96(7)	2198.84(16)
Z	4	4	4
$D_{\text{calc}}/\text{g cm}^{-3}$]	1.216	1.244	1.282
/mm ⁻¹	.626	.589	1.458
F (000)	819.0	808.0	896.0
Data/ restraints/ parameters	4491/0/282	4377/0/272	10060/0/562
S	1.083	1.059	1.061
+R1 [I>2(I)]	0.0532(3974)	0.0670(3233)	0.0671(8733)
wR2 [all data]	0.1564(4491)	0.2056(4377)	0.1933(10060)
Max./min. residual	0.320/ -0.420	0.737/ -0.192	0.785/ -0.984
electron dens. [eÅ ⁻³]			
CCDC No.	2062771	2062770	2041739

 Table S6 Crystal Data Table:

Compounds	$\tau_1(ns)$	$\tau_2(ns)$	$\tau_3(ns)$	$\tau_4(ns)$	α ₁	α ₂	α3	α4	χ ²	τ (ns)	$\Phi_f(\%)$	k _r (s ⁻¹) x 10 ⁶	k _{nr} (s ⁻¹) x 10 ⁶	k _r /k _{nr}
MTPADC A Pristine	2.838	12.993	0.848	-	0.336	0.027	0.637	-	1.173	1.844	25.11	136.171	406.128	0.335
MTPADC A Annealed	0.581	2.338	12.704	0.056	0.087	0.024	0.002	0.887	1.151	0.182	3.6	198.000	5300.000	0.037
TPADCA Pristine	2.118	0.223	6.821	-	0.239	0.729	0.031	-	1.197	0.883	2.79	31.597	1100.906	0.029
TPADCA Ground	0.649	0.039	2.669	-	0.001	.998	0.001	-	1.085	0.0417	5.67	1359.712	22621.103	0.060
MPTZDC A Pristine	1.742	4.078	0.081	-	0.059	0.066	0.874	-	1.035	0.445	2.06	46.292	2200.899	0.021
MPTZDC A Ground	0.93	3.638	0.049	-	0.011	0.007	0.983	-	1.103	0.083	5.81	700	11348.193	0.062
PTZDCA Pristine	0.049	3.222	-	-	0.995	0.005	-	-	1.065	0.067	1.45	216.417	14708.956	0.015
PTZDCA Ground	2.842	0.044	-	-	0.001	0.999	-	-	1.014	0.047	3.39	721.277	20555.319	0.035

Table S7 Lifetime data (ns) and the related parameters. $K_r = \Phi_f / \tau$; $K_{nr} = (1 - \Phi_f) / \tau_f$

 60 70 Time (ns)

 Time (ns)

Fig. S16 Life-time decay profiles for all the compounds as stated in the box.

NMR Spectra:

Fig. S18 ¹³C NMR spectra of **MTPADCA.** The signals are assigned with the corresponding ¹³C nuclei, and the numberings (in bracket) are given in the structure.

Fig. S19 HR-MS spectra of MTPADCA

Fig. S20 ¹H NMR spectra of TPADCA (little adventitious solvent CH₃CH₂OC(O)CH₃ is present)

Fig. S21 ¹³C NMR spectra of TPADCA. (Signals from adventitious solvent CH₃CH₂OC(O)CH₃ are assigned at δ 166.6 [*C*(O)CH₃], 64.1 (OCH₂), 22.1 [C(O)CH₃], 14.5 (CH₃CH₂O-). The signals are assigned with the corresponding ¹³C nuclei, and the numberings (in bracket) are given in the structure.

Fig. S22 HR-MS spectra of TPADCA

Fig. S23 ¹H NMR spectra of PTZDCA (adventitious solvent CH₃CH₂OC(O)CH₃ is present)

Fig. S24 ¹³C-NMR spectra of PTZDCA. The signals are assigned with the corresponding ¹³C nuclei, and the numberings (in bracket) are given in the structure. Signals due to adventitious solvent CH₃CH₂OC(O)CH₃ are assigned at δ 166.6 [*C*(O)CH₃], 64.1 (OCH₂), 22.1 [C(O)CH₃], 14.5 (*C*H₃CH₂O-).

Fig. S25 HR-MS spectra of PTZDCA

References

B. Mohammadi, H. Kazemi, M. Shafieey, *Monatsh Chem.*, 2014, **145**, 1649–1652.

END