Supporting Information

Novel quadruple-stranded heterometallic Ln₂Na complexes hosting sodium ion inside the cryptand-like cavity

Horniichuk O.Ye.^a, Trush V.A.^a, Kariaka N.S.^a, Shishkina S.V.^b, Dyakonenko V.V.^b, Severinovskaya O.V.^c, Gawryszewska P.^d, Domasevitch K. V.^a, Watras A.^e, Amirkhanov V.M.^a

^a Taras Shevchenko National University of Kyiv, Faculty of Chemistry, 12, Lva Tolstogo str., 01033, Kyiv, Ukraine
^b STC "Institute for Single Crystals", National Academy of Science of Ukraine, 60, Nauky ave., 61001, Kharkiv, Ukraine
^c Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17 General Naumov Str., Kyiv, 03164, Ukraine
^d Faculty of Chemistry, University of Wroclaw, 14, F. Joliot-Curie, 50-383 Wroclaw, Poland.
^e INTiBS PAN, Okolna 2, 50-422 Wroclaw, Poland

New Journal of Chemistry

Synthesis of H₂L.¹ Fine powders of 2,2,3,3,4,4-hexafluoropentanediamide (13.25 g, 56 mmol) and phosphorus pentachloride (23.18 g, 112 mmol) were combined in a 500-ml round-bottom flask equipped with a water-cooled condenser connected to a bubble counter. Tetrachloromethane (50 ml) was added to the flask and the resulting mixture was heated to 65 °C and stirred at this temperature until the hydrogen chloride evolution rate slowed down. Afterwards the temperature was increased to about 75 °C and the reaction was allowed to continue until hydrogen chloride evolution ceased. Then the mixture was cooled down to room temperature and the solvent was removed in vacuum. The resulting residue was dissolved in tetrahydrofuran (70 ml) and added dropwise to a stirred solution of triethylamine (62 ml, 445 mmol) in methanol (150 ml) cooled down to -5 °C. The temperature upon addition was kept in the range of 0-5 °C. The obtained solution was allowed to warm up to room temperature and left to stay overnight. Then the solvents were evaporated under vacuum. The obtained residue was dissolved in water (100 ml), whereupon the acetic acid was carefully added to the solution until its medium became weakly acidic. The white precipitate of the product formed was filtered, washed with water and dried in air (17.30 g, 68%). IR (KBr, cm⁻¹): 3095w (v(N-H)), 1746s (v(C=O)), 1478m (Amide-2), 1212s (v(P=O)); ¹H NMR (400 MHz, DMSOd6, 25 °C): δ = 3.74 ppm (d, J = 11.6 Hz, 12H), 11.38 (d, NH, 2H).

Table S1.	Crystal	data and	structure	refinement	of the s	synthesized	complexes.
-----------	---------	----------	-----------	------------	----------	-------------	------------

Compounds	2	3	4
Formula weight	2268.30	2186.43	2197.09
Temperature (K)	100	173	173
Crystal system	tetragonal	triclinic	triclinic
Space group	P42 ₁ 2	<i>P</i> -1	<i>P</i> -1

a, (Å)	17.8807(6)	12.3617(9)	12.1643(2)
b, (Å)	17.8807(6)	12.7385(9)	12.6444(2)
c, (Å)	16.2846(6)	14.0359(12)	14.1504(3)
α, (°)	90	104.654(6)	105.257(2)
β, (°)	90	103.976(6)	104.052(2)
γ, (°)	90	109.378(5)	109.3800(10)
Cell volume, (Å ³)	5206.5(4)	1884.6(3)	1845.88(6)
Z	2	1	1
$D_{calc}(g/cm^3)$	1.446	1.927	1.976
$\mu (mm^{-1})$	1.223	1.448	13.769
F (000)	2252	1078	1084
Reflections collected/unique	4579/4061	8230/6755	7381/6805
GoF	1.078	1.020	1.062
Final R indices $[I > 2\sigma(I)]$	R1= 0.0496,	R1=0.0405,	R1= 0.0508,
	$wR_2 = 0.1405$	$wR_2 = 0.1010$	$wR_2 = 0.1491$
R indices (all data)	R1= 0.0565,	R1= 0.0528,	R1 = 0.0538,
	$wR_2 = 0.1336$	$wR_2 = 0.0962$	$wR_2 = 0.1459$
CCDC	2062595	2082894	2082895

Table S2. Analysis of the Ln³⁺ coordination geometry in the complexes **2**, **3** and **4** using SHAPE 2.1 software.

	2 (Nd1)	2 (Nd2)	3 (La1)	4 (Nd1)
Octagon (D8h)	25.210	25.050	26.949	25.226
Heptagonal pyramid	24.672	24.671	22.738	24.439
(C7v)				
Hexagonal bipyramid	17.196	17.526	12.110	16.350
(D6h)				
Cube (Oh)	9.614	9.975	5.895	9.426
Square antiprism	0.168	0.202	1.869	0.321
(D4d)				
Triangular	2.658	2.786	2.889	2.623
dodecahedron				
(D2d)				
Johnson	16.621	16.767	14.362	15.465
gyrobifastigium J26				
(D2d)				
Johnson elongated	28.333	28.312	25.743	27.116
triangular bipyramid				
J14 (D3h)				
Biaugmented trigonal	2.880	2.855	4.399	2.878
prism J50 (C2v)				
Biaugmented trigonal	1.978	1.843	3.666	1.922
prism (C2v)				
Snub diphenoid J84	5.373	5.430	6.335	5.145
(D2d)				
Triakis tetrahedron	10.476	10.833	6.624	10.202
(Td)				
Elongated trigonal	23.497	23.540	22.025	22.384
bipyramid (D3h)				

Figure S1. Connection of the anionic species [NaLa₂L₄(H₂O)]⁻ and outer Na2 cations in the crystal structure of 3 resulting in 1D linear chains along c-axis direction in the crystal. Na2 is equally disordered across a center of inversion. Part of the organic ligands are omitted for clarity. Symmetry codes: (i) -*x*, -*y*, -*z*; (ii) -*x*, -*y*, -*z*+1; (iii) *x*, *y*, *z*+1.

Figure S2. FTIR spectrum of the complex **2** in 60-600 cm⁻¹ region.

Figure S3. IR spectra of the complexes 3 (black) and 4 (red).

~ .	Vibration band, cm ⁻¹				
Compound	ν(N–H)	ν(C=O)	Amide-2	v(P=O)	
$H_{2}L^{[1]}$	3095	1746	1478	1212	
Na ₂ L	—	1630	1406	1202	
1	—	1621	1411	1159	
2	—	1623	1410	1160	
3	_	1622	1412	1160	
4	_	1624	1411	1161	

Table S3. Some characteristic vibration bands of the synthesized compounds.

Figure S4. ¹H NMR spectrum of Na₂L in DMSO-d6 (a) and its expanded aliphatic region (b).

Figure S5. ¹H NMR spectrum of 1 in DMSO-d6.

Figure S7. ¹H NMR spectrum of 3 in DMSO-d6.

Figure S8. ¹H NMR spectrum of 4 in DMSO-d6.

References

 Trush, V. A.; Gubina, K. E.; Gumeniuk, Y. O.; Sliva, T. Y.; Konovalova, I. S. Tetramethyl N,N'-(2,2,3,3,4,4-Hexa-Fluoro-1,5-Dioxopentane-1,5-Diyl)Bis-(Phosphoramidate). *Acta Crystallogr. Sect. E Struct. Reports Online* 2012, 68, o1127. https://doi.org/10.1107/S1600536812011191.