Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

# Supporting information For

The "Left-hand strategy" for design, synthesis and discovery of novel triazole-mercaptobenzothiazole hybrid compounds as potent quorum sensing inhibitors and anti-biofilm formation of *Pseudomonas aeruginosa*.

Truong Thanh Tung,<sup>1,2\*</sup> Huy Luong Xuan<sup>1,2</sup>

<sup>1</sup>Faculty of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam
<sup>2</sup>PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Vietnam
\*Corresponding author
Email: <u>tung.truongthanh@phenikaa-uni.edu.vn</u>
ORCID: 0000-0002-5263-203X
tunglab.com

### 1. Materials and methods

### 1.1. Chemistry

Solvent, reagents were purchased from Sigma-Aldrich, TCI and were used as is. The reported NMR-spectra (<sup>1</sup>H-NMR) were recorded with 400/500 MHz Bruker Avance and the samples ran at 300K. <sup>13</sup>C-NMR were analysed at 151 MHz or 101 MHz (as indicated). Chemical shifts ( $\delta$ ) are reported in ppm which calibrated to the internal standard (the peak of NMR solvent). *J* values are reported in Hertz. Silica gel 60 F<sub>254</sub> plates (pre-coated) were used for TLC and visualized under UV light. All synthesized compounds possess at least 95% purity before biological studies. Purities were analyzed on a Waters 2795 system equipped with a Waters 996 PDA detector and a Waters Symmetry C18 Column (2.1 x 50 mm, 3.5 I m), flow rate 0.2 mL/min. HRMS data were recorded on an electrospray (ESI) mass spectrometer

### 1.2. Biological sceering of the library compounds

### 1.2.1. Quorum sensing assay

Using the previously described methodology with a slight modification [1] *P. aeruginosa* quorum sensing reporter strains *lasB-gfp* was used for screening [2] the inhibition of QS system. The *Las* reporter strain was cultured, and grown for 20 h at 37 °C (180 rpm). Then the overnight cultures were diluted to a final OD<sub>450</sub> of 0.1. The 96-well microtiter dishes were used for the assay (Black Isoplate, Waltham MA, USA). Library compounds, **4-NPO**, growth media and reporter strains OHHL [*N*-(3-oxohexanoyl)-l-homoserine lactone were added to the microtiter dishes. Victor X4 multilabel plate reader was used for monitoring the growth, green fluorescent protein (GFP) expression

(Waltham MA, USA). The assays were maintained at 34 °C, and the data was read every 15 min (over 20 h). GFP expression was recorded as fluorescence at 485 nm, 535 nm.

### 1.2.2. Anti-biofilm biomass.

The *P. aeruginosa* PA14 was used for the assay using the method previously described [3,4] with slight modification. Compounds was test with the concentration of 100 µM unless otherwise noted. DMSO was used as negative control. 4-NPO was used as positive control. Briefly, the bacterial cultures were diluted to an OD600 of 0.02 in a fresh M63 minimal medium. 200 µL bacterial culture was transferred to each well of a 24- well imaging plate. After the compounds were added, plates were incubated at 30 °C for 48 h. Bacteria grew to the same density as the DMSO control under each condition tested. [4]. The measurements of biofilm biomass were performed by crystal violet (CV) staining method [9,10]. In three wells of the 96-well biofilm microplate were added 190 µL of 0.01% CV (Sigma-Aldrich). The resulting was incubated 30 min at room temparature. After that, the CV solution was removed. The resulting was washed with sterile water (3xtimes) and dry at 50 °C. Then 96% ethanol was added dropwise to each well for detaching biofilm. Absorbance measurement values at 570 nm. If a negative value for optical density (OD) was obtained, it was presented as zero. The experiment was performed with three replicates. Statistical significance was calculated using the students t test

### 1.2.3. Anti-violacein formation of *CviR* receptor.

The *C. violaceum* 31532 was used and grown at 30 °C for 24 h. The compounds were added to evaluate the production of violacein and analyzed by violacein extraction and quantification as described [5]. The overnight culture was incubated with or without peptides (100  $\mu$ M) at 30 °C for 24 h. Then collect the bacterial cells. Re-dissolved in 1 mL

DMSO, remove cell debris and the absorbance of soluble violacein was read at 585nm using a microplate reader.

### 1.2.4. The protease assays.

The assay was performed using the previously described method [6]. Briefly, dilute the logarithmic growth phase of *P. aeruginosa* to OD600 = 0.1 PTSB medium. They then incubated at 37 °C for 8 h. In a 96 well plate, the bacterial culture and **4g**, **4h**, **4m** were added at a concentration of 50  $\mu$ M. Then cultured for 24h at 37 °C. The absorbance was recorded using Spectramax M4 (Molecular Devices, USA) at 440 nm. Data was calculated subtracting OD440 recorded with the final OD600 values.

### 1.2.5. Cytotoxicity Assay.

Using the previously described methodology with a slight modification [7]. Firstly, the stock solution of the active compounds **4g**, **4h**, **4m** was prepared in DMSO as 200 uM. The testing concentrations were prepared from stock solution by diluting in growth medium (90% high glucose medium supplemented with 10% fetal bovine serum). The HeLa cells were grown as monolayers in the growth medium at  $37^{\circ}$ C (atmosphere containing 5% CO<sub>2</sub>). When cells reached 70% confluence were detached from the culture flask with 5% trypsin-EDTA and resuspended in fresh culture media at a density of 5 x 104 cells/mL. By use of a Falcon 24-well, flat bottom plate, 500 µL of the cell suspension was added to each of the wells, and the cells were incubated for 24h at 37°C. Then the active compounds (with concentrations of 0, 1, 5, 10, 15, 20, 25, 30, 40, 50, 70, 100 µM) were added to each cell in triplicates and incubated for 24 h. Th cytotoxicity was performed using the in vitro toxicology assay kit, MTT based (Sigma). Absorbance values were measured at 570 nm and 690 nm. The absorbance values measured at 690 nm

were subtracted from the values measured at 570 nm when the data was analyzed. Data were normalized by subtracting the absorbance values of the growth medium treated equally than the rest of the samples.

### 2. Characterization of compounds

### Compounds 3a-p:

Intermediate **2** alkyne (1 equiv), corresponding alkyne (1.1 equiv), Cul (10 mol%) were added to microwave vial in DMSO. The mixture was irradiated under microwave condition at 120 °C for 10 minutes (high absorption mode) using in Biotage microwave system. The reaction mixture was then diluted in 20 mL H<sub>2</sub>O and extracted with 20 mL of ethyl acetae (x3 times). Organic solvent was removed under vacuum and purified using flash column chromatography to afford **3a-p**.

**2-chloro-4-(4-phenyl-1H-1,2,3-triazol-1-yl)aniline (3a)**. 90% from **2**; mp 167- 1169 <sup>o</sup>C; <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  = 9.08 (s, 1H, CH-triazole), 7.94 – 7.88 (m, 2H, CH-phenyl), 7.63 (dd,  $J_1$  = 12.1,  $J_2$  = 2.4, 1H, CH-phenyl), 7.48 (dd,  $J_1$  = 8.6,  $J_2$  = 6.8, 3H, CH-phenyl), 7.37 (td,  $J_1$  = 7.1,  $J_2$  = 1.5, 1H, CH-phenyl), 6.94 (t, J = 9.1, 1H, CH-phenyl), 5.57 (s, 2H, NH<sub>2</sub>).

**2-chloro-4-(4-(***p***-tolyl)-1***H***-1,2,3-triazol-1-yl)aniline (3b). 94% from 2; mp 175- 176 ^{\circ}C; <sup>1</sup>H NMR (400 MHz, DMSO) \delta = 9.02 (s, 1H, CH-triazole), 7.83 – 7.76 (m, 2H, CH-phenyl), 7.62 (dd, J\_1 = 12.1, J\_2 = 2.4, 1H, CH-phenyl), 7.50 – 7.43 (m, 1H, CH-phenyl), 7.29 (d, J = 7.9, 2H, CH-phenyl), 6.93 (dd, J\_1 = 9.6, J\_2 = 8.6, 1H, CH-phenyl), 5.56 (s, 2H, NH<sub>2</sub>), 2.34 (s, 3H, CH<sub>3</sub>).** 

**2-chloro-4-(3-bromophenyl)-1***H***-1,2,3-triazol-1-yl)aniline (3c).** 89% from **2**; mp 170-172 <sup>O</sup>C; <sup>1</sup>H NMR (400 MHz, DMSO) δ = 9.24 (d, *J* = 1.8, 1H, CH-triazole), 8.12 (t, *J* = 1.8, 1H, CH-phenyl), 7.96 (dd,  $J_1$  = 7.8,  $J_2$  = 1.4, 1H, CH-phenyl), 7.81 (d, J = 2.5, 1H, CH-phenyl), 7.61 (ddd,  $J_1$  = 15.0,  $J_2$  = 7.1,  $J_3$  = 2.8, 2H, CH-phenyl), 7.48 (td,  $J_1$  = 7.9,  $J_2$  = 2.7, 1H, CH-phenyl), 6.99 (d, J = 8.7, 1H, CH-phenyl), 5.83 (s, 2H, NH<sub>2</sub>).

**2-chloro-4-(2-chlorophenyl)-1***H***-1,2,3-triazol-1-yl)aniline (3d).** 76% from **2**; mp 206-208 <sup>o</sup>C; <sup>1</sup>H NMR (600 MHz, DMSO) δ = 9.19 (s, 1H, CH-triazole), 7.98 – 7.93 (m, 2H, CH-phenyl), 7.81 (d, *J* = 2.5, 1H, CH-phenyl), 7.62 (dd, *J*<sub>1</sub> = 8.7, *J*<sub>2</sub> = 2.5, 1H, CH-phenyl), 7.62 – 7.56 (m, 2H, CH-phenyl), 6.99 (d, *J* = 8.7, 1H, CH-phenyl), 5.83 (s, 2H, NH<sub>2</sub>).

**2-chloro-4-(4-chlorophenyl)-1***H***-1,2,3-triazol-1-yl)aniline (3e).** 87% from **2**; mp 157-160 <sup>o</sup>C; <sup>1</sup>H NMR (400 MHz, DMSO) δ = 9.08 (s, 1H, CH-triazole), 8.10 (dd, *J*<sub>1</sub> = 7.7, *J*<sub>2</sub> = 1.8, 1H, CH-phenyl), 7.89 (d, *J* = 2.5, 1H, CH-phenyl), 7.73 – 7.41 (m, 5H, CH-phenyl), 6.99 (d, *J* = 8.8, 1H, CH-phenyl), 5.82 (s, 2H, NH<sub>2</sub>).

**2-chloro-4-benzyl-1***H***-1,2,3-triazol-1-yl)aniline (3f).** 81% from **2**; mp 112- 113 <sup>o</sup>C; <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  = 8.41 (s, 1H, CH-triazole), 7.71 (d, *J* = 2.4, 1H, CH-phenyl), 7.52 (dd, *J*<sub>1</sub> = 8.8, *J*<sub>2</sub> = 2.5, 1H, CH-phenyl), 7.30 (d, *J* = 5.3, 4H, CH-phenyl), 7.21 (tt, *J*<sub>1</sub> = 5.1, *J*<sub>2</sub> = 3.2, 1H, CH-phenyl), 6.91 (d, *J* = 8.8, 1H, CH-phenyl), 5.71 (s, 2H, NH<sub>2</sub>), 4.04 (s, 2H, CH<sub>2</sub>).

**2-chloro-4-(3-fluorophenyl)-1***H***-1,2,3-triazol-1-yl)aniline (3g)**. 89% from **2**; yellow oil; <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  = 9.19 (s, 1H, CH-triazole), 7.79 (dt,  $J_1$  = 7.7,  $J_2$  =1.2, 1H, CH-phenyl), 7.73 (ddd,  $J_1$  = 10.3,  $J_2$  = 2.6,  $J_3$  = 1.5, 1H, CH-phenyl), 7.68 – 7.52 (m, 2H, CH-phenyl), 7.52 – 7.45 (m, 1H, CH-phenyl), 7.28 – 7.18 (m, 1H, CH-phenyl), 6.97 (dd,  $J_1$  = 9.5,  $J_2$  = 8.6, 1H, CH-phenyl), 5.63 (s, 2H, NH<sub>2</sub>).

**2-chloro-4-(4-fluorophenyl)-1***H***-1,2,3-triazol-1-yl)aniline (3h)** was synthesized previously [8].

**2-chloro-4-(2,4-difluorophenyl)-1***H***-1,2,3-triazol-1-yl)aniline (3i).** 80% from **2**; mp 164-165 °C; <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  = 8.90 (d, *J* = 3.2, 1H, CH-triazole), 8.17 (td, *J*<sub>1</sub> = 8.7, *J*<sub>2</sub> = 6.5, 1H, CH-phenyl), 7.85 (d, *J* = 2.5, 1H, CH-phenyl), 7.64 (dd, *J*<sub>1</sub> = 8.7, *J*<sub>2</sub> = 2.5, 1H, CH-phenyl), 7.44 (ddd, *J*<sub>1</sub> = 11.5, *J*<sub>2</sub> = 9.3, *J*<sub>3</sub> = 2.6, 1H, CH-phenyl), 7.33 – 7.16 (m, 1H, CH-phenyl), 6.95 (d, *J* = 8.7, 1H, CH-phenyl), 5.79 (s, 2H, NH<sub>2</sub>).

**2-chloro-4-(2-trifluoromethyl)phenyl)-1***H***-1,2,3-triazol-1-yl)aniline (3j)**. 82% from **2**; mp 112- 114 <sup>O</sup>C; <sup>1</sup>H NMR (600 MHz, DMSO)  $\delta$  = 8.84 (s, 1H, CH-triazole), 7.92 (d, *J* = 7.9, 1H, CH-phenyl), 7.85 (d, *J* = 2.5, 1H, CH-phenyl), 7.84 – 7.79 (m, 2H, CH-phenyl), 7.74 – 7.68 (m, 1H, CH-phenyl), 7.66 (dd, *J*<sub>1</sub> = 8.7, *J*<sub>2</sub> = 2.5, 1H, CH-phenyl), 6.99 (d, *J* = 8.7, 1H, CH-phenyl), 5.83 (s, 2H, NH<sub>2</sub>).

**2-chloro-4-(3-trifluoromethyl)phenyl)-1***H***-1,2,3-triazol-1-yl)aniline (3k)**. 86% from **2**; mp 161- 162  $^{\text{O}}$ C;<sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  = 9.34 (s, 1H, CH-triazole), 8.25 (d, *J* = 4.3, 2H, CH-phenyl), 7.83 (d, *J* = 2.5, 1H, CH-phenyl), 7.82 – 7.72 (m, 2H, CH-phenyl), 7.64 (dd, *J*<sub>1</sub> = 8.8, *J*<sub>2</sub> = 2.5, 1H, CH-phenyl), 7.00 (d, *J* = 8.7, 1H, CH-phenyl), 5.84 (s, 2H, NH<sub>2</sub>).

**2-chloro-4-(4-trifluoromethyl)phenyl)-1***H***-1,2,3-triazol-1-yl)aniline (3l).** 85% from 2; mp 215-217 <sup>O</sup>C; <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  = 9.32 (s, 1H, CH-triazole), 8.15 (d, *J* = 8.1, 2H, CH-phenyl), 7.89 (d, *J* = 8.1, 2H, CH-phenyl), 7.83 (d, *J* = 2.5, 1H, CH-phenyl), 7.64 (dd, *J*<sub>1</sub> = 8.7, *J*<sub>2</sub> = 2.5, 1H, CH-phenyl), 7.00 (d, *J* = 8.7, 1H, CH-phenyl), 5.84 (s, 2H, NH<sub>2</sub>).

**2-chloro-4-(3-methoxyphenyl)-1***H***-1,2,3-triazol-1-yl)aniline (3m).** 94% from **2**; light yellow oil; <sup>1</sup>H NMR (600 MHz, DMSO)  $\delta$  = 9.11 (s, 1H, CH-triazole), 7.62 (dd,  $J_1$  = 12.0,

*J*<sub>2</sub> = 2.4, 1H, CH-phenyl), 7.54 – 7.44 (m, 3H, CH-phenyl), 7.39 (t, *J* = 7.9, 1H, CH-phenyl), 6.96 – 6.90 (m, 2H, CH-phenyl), 5.58 (s, 2H, NH<sub>2</sub>), 3.83 (s, 3H, OCH<sub>3</sub>).

**2-chloro-4-(thiophen-3-yl)phenyl)-1***H***-1,2,3-triazol-1-yl)aniline (3n)**. 93% from **2**; mp 188-189 °C; <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  = 9.00 (s, 1H, CH-triazole), 7.92 (dd,  $J_1$  = 2.9,  $J_2$  = 1.3, 1H, CH-thiophen), 7.79 (d, J = 2.5, 1H, CH-phenyl), 7.71 (dd,  $J_1$  = 5.0,  $J_2$  = 2.9, 1H, CH-thiphen), 7.65 – 7.55 (m, 2H, CH-phenyl & CH-thiophen), 6.99 (d, J = 8.8, 1H, CH-phenyl), 5.80 (s, 2H, NH<sub>2</sub>).

**2-chloro-4-(4-ethylphenyl)-1***H***-1,2,3-triazol-1-yl)aniline (3o)**. 98% from **2**; mp 120-122 <sup>O</sup>C; <sup>1</sup>H NMR (400 MHz, DMSO) δ = 9.08 (s, 1H, CH-triazole), 7.88 – 7.79 (m, 3H, CH-phenyl), 7.63 (dd, *J*<sub>1</sub> = 8.7, *J*<sub>2</sub> = 2.5, 1H, CH-phenyl), 7.35 (d, *J* = 8.1, 2H, CH-phenyl), 6.99 (d, *J* = 8.8, 1H, CH-phenyl), 5.80 (s, 2H, NH<sub>2</sub>), 2.67 (q, *J* = 7.6, 2H, CH<sub>2</sub>), 1.24 (t, *J* = 7.6, 3H, CH<sub>3</sub>).

**2-chloro-4-(4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl)aniline (3p)**. 89% from **2**; mp 170.1-172.1 °C; <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  = 9.15 (s, 1H, CH-triazole), 8.67 (dt,  $J_1$  = 4.7,  $J_2$ = 1.4, 1H, CH-pyridine), 8.15 – 8.08 (m, 1H, CH-phenyl), 7.95 (td,  $J_1$  = 7.7,  $J_2$  = 1.8, 1H, CH-pyridine), 7.90 (d, J = 2.5, 1H, CH-pyridine), 7.69 (dd,  $J_1$  = 8.7,  $J_2$  = 2.6, 1H, CHphenyl), 7.41 (ddd,  $J_1$  = 7.6,  $J_2$  = 4.9, 1.2, 1H, CH-pyridine), 6.98 (d, J = 8.7, 1H, CHphenyl), 5.81 (s, 2H, NH<sub>2</sub>).

### Compounds 4a-p

Compounds **3a-n** (100 mg) was dissolved in 10 mL DMAC followed by *O*-isopropylxanthic acid potassium salt (1.5 equiv). The mixture was irradiated under microwave condition (150 °C, 5 min). The reaction mixture was then diluted in 50 mL  $H_2O$  and kept at room

temperature for 1h. The precipitated product was filtered and washed several times with  $H_2O$ , cold acetone, cold ethanol to afforded the products **4a-p**.

**6-(4-phenyl-1H-1,2,3-triazol-1-yl)benzo[d]thiazole-2-thiol (4a):** Purity 98.2% by HPLC; Yield 88%; mp 266- 267 <sup>o</sup>C; <sup>1</sup>H NMR (400 MHz, DMSO) δ = 14.03 (s, 1H, SH), 9.28 (s, 1H, CH-triazole), 8.36 (d, J = 2.2, 1H, CH-benzothiazole), 8.02 – 7.92 (m, 3H, CH-phenyl & benzothiazole), 7.56 – 7.47 (m, 3H, CH-phenyl & benzothiazole), 7.45 – 7.36 (m, 1H). <sup>13</sup>C NMR (101 MHz, DMSO) δ 190.56, 147.35, 141.26, 133.11, 130.76, 130.13, 129.01, 128.28, 125.31, 119.83, 119.67, 113.85, 113.12. HRMS (ESI) m/z [M+H]<sup>+</sup> calcd for C15H11N4S2<sup>+</sup> 311.0425, found 311.0425.

**6**-(**4**-(**p**-tolyl)-1H-1,2,3-triazol-1-yl)benzo[d]thiazole-2-thiol (4b): Purity 100% by HPLC; Yield 70%; mp 282-283 <sup>o</sup>C; <sup>1</sup>H NMR (400 MHz, DMSO) δ = 14.03 (s, 1H, SH), 9.22 (s, 1H, CH-triazole), 8.35 (d, J = 2.2, 1H, CH-benzothiazole), 7.97 (dd,  $J_1 = 8.7$ ,  $J_2 = 2.2$ , 1H, CH-benzothiazole), 7.88 – 7.81 (m, 2H, CH-phenyl), 7.51 (d, J = 8.7, 1H, CHbenzothiazole), 7.33 (d, J = 7.9, 2H, CH-phenyl), 2.38 (s, 3H, CH<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, DMSO) δ 190.52, 147.41, 141.23, 137.66, 133.13, 130.75, 129.54, 127.34, 125.23, 119.59, 119.35, 113.75, 113.10, 20.85. HRMS (ESI) m/z [M+H]<sup>+</sup> calcd for C16H13N4S2<sup>+</sup> 325.0582, found 325.0580.

6-(4-(3-bromophenyl)-1H-1,2,3-triazol-1-yl)benzo[d]thiazole-2-thiol (4c): Purity 98.8% by HPLC; Yield 89%; mp 216-217 <sup>O</sup>C; <sup>1</sup>H NMR (400 MHz, DMSO) δ = 14.06 (s, 1H, SH), 9.40 (s, 1H, CH-triazole), 8.35 (d, J = 2.2, 1H, CH-benzothiazole), 8.14 (t, J =1.8, 1H, CH-phenyl), 7.97 (ddd,  $J_1 = 8.8$ ,  $J_2 = 6.0$ ,  $J_3 = 1.8$ , 2H, CH-phenyl), 7.60 (dt,  $J_1 =$ 8.3,  $J_2 = 1.2$ , 1H, CH-benzothiazole), 7.55 – 7.45 (m, 2H, CH-benzothiazole & phenyl). <sup>13</sup>C NMR (101 MHz, DMSO) δ 190.59, 145.86, 141.38, 132.97, 132.46, 131.26, 130.95, 130.80, 127.79, 124.14, 122.35, 120.64, 119.63, 113.86, 113.17. HRMS (ESI) m/z [M+H]<sup>+</sup> calcd for C15H10BrN4S2<sup>+</sup> 388.9530, found 388.9532.

**6-(4-(2-chlorophenyl)-1H-1,2,3-triazol-1-yl)benzo[d]thiazole-2-thiol (4d):** Purity 100% by HPLC; Yield 80%; mp 268-269 <sup>o</sup>C; <sup>1</sup>H NMR (400 MHz, DMSO) δ = 14.02 (s, 1H, SH), 9.22 (s, 1H, CH-triazole), 8.42 (d, J = 2.2, 1H, CH-benzothiazole), 8.13 (dd,  $J_1 = 7.7$ ,  $J_2 = 1.8$ , 1H, CH-phenyl), 8.05 (dd,  $J_1 = 8.7$ ,  $J_2 = 2.2$ , 1H, CH-benzothiazole), 7.64 (dd,  $J_1 = 7.8$ ,  $J_2 = 1.5$ , 1H, CH-phenyl), 7.50 (dqd,  $J_1 = 14.7$ ,  $J_2 = 7.5$ ,  $J_3 = 1.6$ , 3H, CH-benzothiazole & phenyl). <sup>13</sup>C NMR (101 MHz, DMSO) δ 190.59, 143.86, 141.34, 132.90, 130.68, 130.28, 129.90, 129.85, 128.66, 127.59, 122.34, 119.97, 114.15, 113.04. HRMS (ESI) m/z [M+H]<sup>+</sup> calcd for C15H10CIN4S2<sup>+</sup> 345.0035, found 345.0035.

**6-(4-(4-chlorophenyl)-1H-1,2,3-triazol-1-yl)benzo[d]thiazole-2-thiol** (4e): Purity 99.9% by HPLC; Yield 90%; mp 278-280 <sup>o</sup>C; <sup>1</sup>H NMR (400 MHz, DMSO) δ = 14.03 (s, 1H, SH), 9.33 (dd, J = 4.3, 1.6, 1H, CH-triazole), 8.35 (q, J = 2.4, 1H, CH-benzothiazole), 7.97 (ddt,  $J_1 = 8.4$ ,  $J_2 = 4.6$ ,  $J_3 = 1.9$ , 2H, CH-phenyl), 7.60 (dt,  $J_1 = 8.6$ ,  $J_2 = 2.1$ , 2H, CHphenyl), 7.51 (dd,  $J_1 = 8.7$ ,  $J_2 = 2.4$ , 1H, CH-benzothiazole), 7.43 – 7.30 (m, 1H, CHbenzothiazole). <sup>13</sup>C NMR (101 MHz, DMSO) δ 190.58, 146.25, 141.33, 133.00, 132.73, 130.77, 129.09, 129.04, 126.97, 120.20, 119.68, 113.87, 113.12. HRMS (ESI) m/z [M+H]<sup>+</sup> calcd for C15H10CIN4S2 <sup>+</sup> 345.0035, found 345.0035.

**6-(4-benzyl-1H-1,2,3-triazol-1-yl)benzo[d]thiazole-2-thiol (4f):** Purity 96.6% by HPLC; Yield 77%; mp 238- 239 <sup>o</sup>C; <sup>1</sup>H NMR (400 MHz, DMSO) δ = 13.97 (s, 1H, SH), 8.54 (s, 1H, CH-triazole), 8.28 (s, 1H, CH-benzothiazole), 7.91 (dd, *J*<sub>1</sub> = 8.7, *J*<sub>2</sub> = 2.2, 1H, CH-benzothiazole), 7.45 (d, *J* = 8.8, 1H, CH-benzothiazole), 7.33 (d, *J* = 4.4, 4H, CH-phenyl), 7.25 (m, 1H, CH-phenyl), 4.11 (s, 2H, CH<sub>2</sub>). <sup>13</sup>C NMR (151 MHz, DMSO) δ 147.94, 139.79, 133.80, 129.18, 129.09, 126.90, 121.55, 120.10, 114.26, 31.83. HRMS (ESI) m/z [M+H]<sup>+</sup> calcd for C16H13N4S2 <sup>+</sup> 325.0582, found 325.0581.

**6**-(4-(3-fluorophenyl)-1H-1,2,3-triazol-1-yl)benzo[d]thiazole-2-thiol (4g): Purity 99.7% by HPLC, Yield 90%; mp 266-267 °C; <sup>1</sup>H NMR (400 MHz, DMSO) δ = 14.04 (s, 1H, SH), 9.36 (s, 1H, CH-triazole), 8.35 (d, J = 2.2, 1H, CH-benzothiazole), 7.96 (dd,  $J_1 = 8.7$ ,  $J_2 = 2.2$ , 1H, CH-benzothiazole), 7.81 (dt,  $J_1 = 7.7$ ,  $J_2 = 1.2$ , 1H, CH-phenyl), 7.75 (ddd,  $J_1 = 10.2$ ,  $J_2 = 2.6$ ,  $J_3 = 1.4$ , 1H, CH-phenyl), 7.64 – 7.47 (m, 2H, CH-phenyl), 7.25 (td,  $J_1 = 8.5$ ,  $J_2 = 2.4$ , 1H, CH-benzothiazole).<sup>13</sup>C NMR (101 MHz, DMSO-d<sub>6</sub>) δ 190.61, 163.79 (d, J = 243.4 Hz), 146.24 (d, J = 2.8 Hz), 141.36, 132.97, 132.53 (d, J = 8.5 Hz), 131.14 (d, J = 8.6 Hz), 130.79, 121.34 (d, J = 2.9 Hz), 120.59, 119.69, 115.09 (d, J = 21.1 Hz), 113.91, 113.14, 112.00 (d, J = 23.0 Hz). HRMS (ESI) m/z [M+H]<sup>+</sup> calcd for C15H10FN4S2 <sup>+</sup> 329.0331, found 329.0330.

**6-(4-(4-fluorophenyl)-1H-1,2,3-triazol-1-yl)benzo[d]thiazole-2-thiol (4h):** Purity 100% by HPLC; Yield 71%; mp 270-273 <sup>o</sup>C; <sup>1</sup>H NMR (600 MHz, DMSO) δ = 14.06 (s, 1H, SH), 9.29 (s, 1H, CH-triazole), 8.35 (d, J = 2.3, 1H, CH-benzothiazole), 7.99 (tdd,  $J_1 = 14.6$ ,  $J_2 = 7.8$ ,  $J_3 = 3.1$ , 3H, CH-benzothiazole & phenyl), 7.52 (d, J = 8.6, 1H, CH-benzothiazole), 7.38 (t, J = 8.8, 2H, CH-phenyl).<sup>13</sup>C NMR (151 MHz, DMSO-d<sub>6</sub>) δ 191.06, 163.30 (d, J = 245.0 Hz), 146.96, 141.79, 133.55, 131.26, 127.87 (d, J = 8.5 Hz), 127.74 (d, J = 3.7 Hz), 120.27, 120.15, 116.56 (d, J = 22.2 Hz), 114.34, 113.62. HRMS (ESI) m/z [M+H]<sup>+</sup> calcd for C15H10FN4S2<sup>+</sup> 329.0331, found 329.0333.

**6-(4-(2,4-difluorophenyl)-1H-1,2,3-triazol-1-yl)benzo[d]thiazole-2-thiol (4i)**: Purity 98.3% by HPLC; Yield 88%; mp 230-232 <sup>O</sup>C; <sup>1</sup>H NMR (400 MHz, DMSO) δ = 14.00 (s,

1H, SH), 9.03 (d, J = 3.1, 1H, CH-triazole), 8.39 (d, J = 2.3, 1H, CH-benzothiazole), 8.21 (td,  $J_1 = 8.7$ ,  $J_2 = 6.5$ , 1H, CH-phenyl), 8.03 (dd,  $J_1 = 8.7$ ,  $J_2 = 2.3$ , 1H, CH-benzothiazole), 7.47 (td,  $J_1 = 9.8$ ,  $J_2 = 3.3$ , 2H, CH-benzothiazole & phenyl), 7.28 (td,  $J_1 = 8.5$ ,  $J_2 = 2.6$ , 1H, CH-phenyl).<sup>13</sup>C NMR (151 MHz, DMSO-d<sub>6</sub>)  $\delta$  191.18, 162.50 (dd, J = 247.9, 12.5 Hz), 159.13 (dd, J = 251.8, 13.5 Hz), 141.92, 140.89 (d, J = 4.4 Hz), 133.46, 131.24, 129.42 (dd, J = 10.6, 5.5 Hz), 122.00 (d, J = 11.3 Hz), 119.01, 114.65 (dd, J = 14.0, 4.5 Hz), 114.54, 113.49, 112.85 (dd, J = 21.9, 4.3 Hz), 105.18 (t, J = 26.2 Hz). HRMS (ESI) m/z [M+H]<sup>+</sup> calcd for C15H8F2N4S2 <sup>+</sup> 347.0237, found 347.0236.

**6-(4-(2-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-1-yl)benzo[d]thiazole-2-thiol** (**4**j): Purity 98.8% by HPLC; Yield 73%; mp 266-267 <sup>o</sup>C; <sup>1</sup>H NMR (600 MHz, DMSO) δ = 14.06 (s, 1H, SH), 8.98 (s, 1H, CH-triazole), 8.40 (d, J = 2.2, 1H, CH-benzothiazole), 8.03 (dd,  $J_1 = 8.7$ ,  $J_2 = 2.2$ , 1H, CH-benzothiazole), 7.95 (d, J = 7.9, 1H, CH-phenyl), 7.88 – 7.80 (m, 2H, CH-phenyl), 7.73 (td,  $J_1 = 6.6$ ,  $J_2 = 3.0$ , 1H, CH-phenyl), 7.52 (d, J = 8.7, 1H, CHbenzothiazole). <sup>13</sup>C NMR (151 MHz, DMSO-d<sub>6</sub>) δ 191.10, 145.20, 142.12, 133.37, 133.23, 132.68, 131.32, 129.79, 129.38 (d, J = 2.3 Hz), 127.25 (q, J = 30.1 Hz), 126.95 (q, J = 5.5 Hz), 124.52 (q, J = 273.5 Hz), 122.82 (q, J = 3.2 Hz), 120.44, 114.62, 113.72. HRMS (ESI) m/z [M+H]<sup>+</sup> calcd for C16H10F3N4S2 <sup>+</sup> 379.0299, found 379.0299.

6-(4-(3-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-1-yl)benzo[d]thiazole-2-thiol (4k): Purity 99.1 % by HPLC; Yield 78%; mp 268-272  $^{O}$ C; <sup>1</sup>H NMR (600 MHz, DMSO) δ = 14.08 (s, 1H, SH), 9.50 (s, 1H, CH-triazole), 8.37 (s, 1H, CH-benzothiazole), 8.28 (d, *J* = 2.7, 2H, CH-phenyl), 7.98 (dd, *J*<sub>1</sub> = 8.5, 2.3, 1H, CH-benzothiazole), 7.78 (dd, *J*<sub>1</sub> = 4.8, *J*<sub>1</sub> = 1.9, 2H, CH-phenyl), 7.54 (d, *J* = 8.7, 1H, CH-benzothiazole). <sup>13</sup>C NMR (151 MHz, DMSOd<sub>6</sub>) δ 191.04, 146.41, 142.01, 133.43, 131.71, 131.39, 130.78, 130.46 (q, *J* = 32.8, 31.8 Hz), 129.51, 125.24 (d, J = 4.1 Hz), 124.52 (q, J = 273.7 Hz), 122.22 (d, J = 4.6 Hz), 121.36, 120.08, 114.33, 113.69. HRMS (ESI) m/z [M+H]<sup>+</sup> calcd for C16H10F3N4S2<sup>+</sup> 379.0299, found 379.0299.

# **6-(4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-1-yl)benzo[d]thiazole-2-thiol** (**4l):** Purity 99.0% by HPLC; Yield 72%; mp 260-263 <sup>o</sup>C; <sup>1</sup>H NMR (600 MHz, DMSO) δ = 14.05 (s, 1H, SH), 9.47 (s, 1H, CH-triazole), 8.37 (s, 1H, CH-benzothiazole), 8.18 (d, J = 8.0, 2H, CH-phenyl), 7.99 (d, J = 9.6, 1H, CH-benzothiazole), 7.91 (d, J = 8.0, 2H, CH-phenyl), 7.99 (d, J = 9.6, 1H, CH-benzothiazole), 7.91 (d, J = 8.0, 2H, CH-phenyl), 7.92 (d, J = 8.7, 1H, CH-benzothiazole). <sup>13</sup>C NMR (151 MHz, DMSO-d<sub>6</sub>) δ 191.30, 146.62, 142.10, 134.77, 133.61, 131.45, 129.10 (q, J = 31.8 Hz), 127.52 (q, J = 3.9 Hz), 126.30, 124.67 (q, J = 271.8 Hz), 121.64, 120.23, 114.45, 113.62. HRMS (ESI) m/z [M+H]<sup>+</sup> calcd for C16H10F3N4S2<sup>+</sup> 379.0299, found 379.0299.

**6-(4-(3-methoxyphenyl)-1H-1,2,3-triazol-1-yl)benzo[d]thiazole-2-thiol (4m):** Purity 100% by HPLC; Yield 91%; mp 252-253 °C; <sup>1</sup>H NMR (400 MHz, DMSO) δ = 14.03 (s, 1H, SH), 9.30 (s, 1H, CH-triazole), 8.35 (d, J = 2.1, 1H, CH-benzothiazole), 7.97 (dd,  $J_1$ = 8.7,  $J_2 = 2.2$ , 1H, CH-benzothiazole), 7.58 – 7.48 (m, 3H, CH-benzothiazole & phenyl), 7.44 (t, J = 7.9, 1H, CH-phenyl), 6.98 (ddd,  $J_1 = 8.2$ ,  $J_2 = 2.5$ ,  $J_3 = 1.0$ , 1H, CH-phenyl), 3.86 (s, 3H, CH<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, DMSO) δ 190.57, 159.73, 147.26, 141.26, 133.08, 131.44, 130.76, 130.16, 120.04, 119.62, 117.61, 114.01, 113.80, 113.11, 110.56, 55.16. HRMS (ESI) m/z [M+H]<sup>+</sup> calcd for C16H13N4OS2 <sup>+</sup> 341.0531, found 341.0532.

**6-(4-(thiophen-3-yl)-1H-1,2,3-triazol-1-yl)benzo[d]thiazole-2-thiol (4n):** Purity 100% by HPLC; Yield 75%; mp 266-269 <sup>O</sup>C; <sup>1</sup>H NMR (400 MHz, DMSO) δ = 14.05 (s, 1H, SH), 9.18 (s, 1H, CH-triazole), 8.38 (s, 1H, CH-benzothiazole), 8.02 – 7.95 (m, 2H, CH-

benzothiazole & thiophen), 7.76 (dd,  $J_1 = 5.0$ ,  $J_1 = 2.9$ , 1H, CH-thiophen), 7.63 (dd,  $J_1 = 5.0$ ,  $J_1 = 1.3$ , 1H, CH-thiophen), 7.54 (d,  $J_1 = 8.7$ , 1H, CH-benzothiazole). <sup>13</sup>C NMR (101 MHz, DMSO)  $\delta$  191.06, 144.38, 141.73, 133.56, 131.86, 131.26, 127.94, 126.22, 121.98, 120.11, 120.01, 114.31, 113.60. HRMS (ESI) m/z [M+H]<sup>+</sup> calcd for C13H9N4S3<sup>+</sup> 316.9989, found 316.9987.

**6-(4-(4-ethylphenyl)-1H-1,2,3-triazol-1-yl)benzo[d]thiazole-2-thiol (4o).** Purity 99.7% by HPLC; Yield 84%; mp 276-279 °C; <sup>1</sup>H NMR (400 MHz, DMSO) δ = 14.03 (s, 1H, SH), 9.23 (s, 1H, CH-triazole), 8.35 (d, J = 2.2, 1H, CH-benzothizole), 7.98 (dd,  $J_1 = 8.7$ ,  $J_2 = 2.2$ , 1H, CH-benzothizole), 7.87 (d, J = 8.1, 2H, CH-phenyl), 7.51 (d, J = 8.7, 1H, CH-benzothizole), 7.36 (d, J = 8.0, 2H, CH-phenyl), 2.68 (q, J = 7.6, 2H, CH<sub>2</sub>), 1.24 (t, J = 7.6, 3H, CH<sub>3</sub>). <sup>13</sup>C NMR (101 MHz, DMSO) δ 190.53, 147.44, 143.98, 133.14, 130.76, 128.37, 127.60, 125.33, 119.61, 119.38, 113.77, 113.11, 27.94, 15.44. HRMS (ESI) m/z [M+H]<sup>+</sup> calcd for C17H15N4S2<sup>+</sup> 339.0738, found 339.0738.

**6-(4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl)benzo[d]thiazole-2-thio (4p):** Purity 97.4% by HPLC; Yield 59%; mp 292-296 <sup>o</sup>C; <sup>1</sup>H NMR (600 MHz, DMSO) δ = 14.06 (s, 1H, SH), 9.35 (s, 1H, CH-triazole), 8.72 – 8.68 (m, 1H, CH-pyridine), 8.44 (d, J = 2.2, 1H, CH-benzothiazole), 8.17 (d, J = 7.9, 1H, CH-pyridine), 8.07 (dd, J = 8.7, 2.2, 1H, CH-benzothiazole), 8.03 (td,  $J_1$  = 7.7,  $J_1$  = 1.8, 1H, CH-pyridine), 7.53 – 7.45 (m, 2H, CH-benzothiazole & pyridine). <sup>1</sup>H NMR (600 MHz, DMSO-d<sub>6</sub>) δ 14.04 (s, 1H), 9.32 (s, 1H), 8.68 (d, J = 4.2 Hz, 1H), 8.42 (d, J = 2.2 Hz, 1H), 8.15 (d, J = 7.9 Hz, 1H), 8.05 (dd, J = 8.7, 2.2 Hz, 1H), 8.00 (td, J = 7.7, 1.8 Hz, 1H), 7.49 (d, J = 8.7 Hz, 1H), 7.45 (ddd, J = 7.6, 4.9, 1.2 Hz, 1H). <sup>13</sup>C NMR (151 MHz, DMSO) δ 190.45, 149.17, 148.83, 147.64,

141.27, 137.79, 132.83, 130.58, 123.42, 121.52, 119.90, 119.71, 113.91, 112.97. HRMS (ESI) m/z [M+H]<sup>+</sup> calcd for C14H10N5S2<sup>+</sup> 312.0377, found 312.0376.

# References

- T. Bjarnsholt, M. van Gennip, T. H. Jakobsen, L. D. Christensen, P. Ø. Jensen, M. Givskov, Nat Protoc. 2010, 5, 282-93.
- M. Hentzer, K. Riedel, T. B. Rasmussen, A. Heydorn, JB. Andersen, M. R. Parsek, S. A. Rice, L. Eberl, S. Molin, N. Høiby, S. Kjelleberg, M. Givskov, *Microbiology*. 2002, 148, 87-102
- E. L. Lagendijk, S. Validov, G. E. M. Lamers, S. de Weert, G. V. Bloemberg, *FEMS Microbiol. Lett.* 2010, 305, 81–90.
- R. Sommer, S. Wagner, K. Rox, A. Varrot, D. Hauck, E.-C. Wamhoff, J. Schreiber, T. Ryckmans, T. Brunner, C. Rademacher, R. W. Hartmann, M. Brönstrup, A. Imberty, A. Titz. J. Am. Chem. Soc. 2018, 140, 2537–2545
- R.S. Blosser, K. M. Gray, J. Microbiol. Method. 2000, 40, 47–55. doi: 10.1016/S0167-7012(99)00136-0
- P.J. Petersen, P. Labthavikul, C.H. Jones, P.A. Bradford, J. Antimicrob. Chemother. 2006, 57, 573-576
- Truong-Thanh Tung, Trong T Dao, Marta G Junyent, Michael Palmgren, Thomas Günther-Pomorski, Anja T Fuglsang, Søren B Christensen, John Nielsen, *ChemMedChem*, 2018, 13(1):37-47
- 8. T. Tung, L. X. Huy, synth. comm. 2020, 50, 2007-2014
- Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M. J Microbiol Methods. 2000; 40, 175–9.
- 10. Cristina D. Cruz, Shreya Shah, Päivi Tammela, BMC Microbiology, 2018, 18, 173.

# 6.Copy of NMR of all compounds and Chromatographic Analysis for 4a-p

Compound 2.





| - 12000<br>- 11000<br>- 11000<br>- 10000<br>- 2000<br>- 7000<br>- 7000<br>- 7000<br>- 2000<br>- 2000<br>- 1000 | 00                  |
|----------------------------------------------------------------------------------------------------------------|---------------------|
|                                                                                                                | 10                  |
|                                                                                                                | - ņ                 |
|                                                                                                                | -<br>- 7            |
|                                                                                                                | -<br>- <sup>-</sup> |
|                                                                                                                | - 0                 |
|                                                                                                                |                     |
|                                                                                                                | - ~                 |
|                                                                                                                | - m                 |
|                                                                                                                | - 4                 |
|                                                                                                                | - س_                |
| Z:S                                                                                                            | 1 (ppm)             |
|                                                                                                                | - ~                 |
| 66° / -<br>96° / -<br>96° / -<br>86° / -                                                                       | - ∞                 |
| 8+'2 -<br>OS'2 -<br>T9'2 -<br>Z9'2 -                                                                           | - O                 |
| +972 -<br>5972 -<br>0672 -                                                                                     | - 10                |
| 80.6 -<br>26.7 -                                                                                               | - #                 |
|                                                                                                                | - 12                |
|                                                                                                                | + 13                |
|                                                                                                                | 14                  |
|                                                                                                                | 16                  |









| Compound <b>3f</b>                           |       |       |       |       |       |       |       |       |       |      |   |                     |  |
|----------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|---|---------------------|--|
| 55000                                        | 50000 | 45000 | 40000 | 35000 | 30000 | 25000 | 20000 | 15000 | 10000 | 5000 | 0 |                     |  |
|                                              |       |       |       | 1     | ı I   |       | r     |       | .     |      |   | 0.5                 |  |
|                                              |       |       |       |       |       |       |       |       |       |      |   | 1.0                 |  |
|                                              |       |       |       |       |       |       |       |       |       |      |   | 1:5                 |  |
|                                              |       |       |       |       |       |       |       |       |       |      |   | 2.0                 |  |
|                                              |       |       |       |       |       |       |       |       |       |      |   | 2.5                 |  |
|                                              |       |       |       |       |       |       |       |       |       |      |   | 3.0                 |  |
|                                              |       |       |       |       |       |       |       |       |       |      |   | 3.5                 |  |
| 40.4 —                                       |       |       |       |       |       |       |       |       |       |      |   | - 4.0               |  |
|                                              |       |       |       |       |       |       |       |       |       |      |   | 4.5                 |  |
|                                              |       |       |       |       |       |       |       |       |       |      |   | 5.5 5.0<br>f1 (ppm) |  |
| τ <i>∠</i> ·s —                              |       |       |       |       |       |       |       |       |       |      |   | - 0.9               |  |
|                                              |       |       |       |       |       |       |       |       |       |      |   | 6.5                 |  |
| 06 <sup>.9</sup><br>26 <sup>.9</sup><br>27.7 |       |       |       |       |       |       |       |       |       | =    |   | 7.0                 |  |
| 12.7<br>12.7<br>22.7<br>22.7                 |       |       |       |       |       |       |       |       |       | _    |   | 7.5                 |  |
| 2022<br>62.7<br>2.20<br>7.20<br>7.20         |       |       |       |       |       |       |       |       |       | -    |   | 8.0                 |  |
| 05'Z -<br>TS'Z -<br>ZS'Z -<br>ES'Z -         |       |       |       |       |       |       |       |       |       |      |   | 8.5                 |  |
| 14.8<br>17.7 -<br>17.7 -                     |       |       |       |       |       |       |       |       |       |      |   | - 0.6               |  |
|                                              |       |       |       |       |       |       |       |       |       |      |   | 9.5                 |  |
|                                              |       |       |       |       |       |       |       |       |       |      |   | -                   |  |









Compound 3j



| Сс                       | omp                           | oou     | nd      | 31      |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |     |      |      |                 |
|--------------------------|-------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-----|------|------|-----------------|
| - 23000                  | - 22000                       | - 21000 | - 20000 | - 19000 | - 18000 | - 17000 | - 16000 | - 15000 | - 14000 | - 13000 | - 12000 | - 11000 | - 10000 | - 9000 | - 8000 | - 7000 | - 6000 | - 5000 | - 4000 | - 3000 | - 2000 | - 1000 | 0 - | 1000 | 2000 |                 |
|                          |                               |         |         |         |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |     |      |      | 1.5             |
|                          |                               |         |         |         |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |     |      |      | 2.0             |
|                          |                               |         |         |         |         |         |         |         |         |         |         |         |         | -      |        |        |        |        |        |        |        |        |     |      |      | 2.5             |
|                          |                               |         |         |         |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |     |      |      | 3.0             |
|                          |                               |         |         |         |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |     |      |      | 3.5             |
|                          |                               |         |         |         |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |     |      |      | 4.0             |
|                          |                               |         |         |         |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |     |      |      | 4.5             |
|                          |                               |         |         |         |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |     |      |      | 5.0             |
|                          |                               |         |         |         |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |     |      |      | 5.5             |
| ₽8.                      | s                             |         |         |         |         |         |         |         |         |         |         |         |         |        |        |        |        |        | -      |        |        |        |     |      |      | 6.0<br>f1 (ppm) |
|                          |                               |         |         |         |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |     |      |      | 6.5             |
| 10.<br>20.               | <sup>9</sup> ∠>               |         |         |         |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |     |      |      | 7.0             |
| 69<br>59<br>59<br>99     | 2  <br>2  <br>2  <br>2  <br>2 |         |         |         |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |     |      |      | 7.5             |
| 06.<br>88.<br>48.<br>58. |                               |         |         |         |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |        | _=     |        |     |      |      | 8.0             |
| 91.                      | 8<br>8<br>2                   |         |         |         |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |     |      |      | 8.5             |
|                          |                               |         |         |         |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |     |      |      | 0.6             |
| 25.                      | 6 —                           |         |         |         |         |         |         |         |         |         |         |         |         |        |        |        |        |        | _      |        |        |        |     |      |      | 9.5             |
|                          |                               |         |         |         |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |     |      |      | 0.0             |
|                          |                               |         |         |         |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        |     |      |      | 0.5 1           |



| Compound <b>3n</b>                   |       |       |       |       |       |       |       |       |   |                     |  |  |  |
|--------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|---|---------------------|--|--|--|
| 45000                                | 40000 | 35000 | 30000 | 25000 | 20000 | 15000 | 10000 | 5000  | 0 |                     |  |  |  |
|                                      |       |       | ·     | . I   | ı I   | ı I i | I     | ı — I |   | 0.5                 |  |  |  |
|                                      |       |       |       |       |       |       |       |       |   | 1.0                 |  |  |  |
|                                      |       |       |       |       |       |       |       |       |   | 1.5                 |  |  |  |
|                                      |       |       |       |       |       |       |       |       | - | 5.0                 |  |  |  |
|                                      |       |       |       |       |       |       |       |       |   | 2.5                 |  |  |  |
|                                      |       |       |       |       |       |       |       |       |   | 3.0                 |  |  |  |
|                                      |       |       |       |       |       |       |       | -     |   | 3.5                 |  |  |  |
|                                      |       |       |       |       |       |       |       |       | 4 | - 4.0               |  |  |  |
|                                      |       |       |       |       |       |       |       |       |   | 4-7-                |  |  |  |
|                                      |       |       |       |       |       |       |       |       |   | 5.5 5.0<br>f1 (ppm) |  |  |  |
| 08.2 —                               |       |       |       |       |       |       |       |       |   |                     |  |  |  |
|                                      |       |       |       |       |       |       |       |       |   | 6.5                 |  |  |  |
| 86.9<br>86.5                         |       |       |       |       |       |       |       | =     |   | 7.0                 |  |  |  |
| 25'2<br>85'2<br>65'2<br>65'2         |       |       |       |       |       |       |       |       |   | 7.5                 |  |  |  |
| 09'2 -<br>09'2 -<br>29'2 -<br>29'2 - |       |       |       |       |       |       |       | -     |   | 8.0                 |  |  |  |
| 22.7 -<br>27.7 -<br>27.7 -           |       |       |       |       |       |       |       |       |   | 8.5                 |  |  |  |
| 08'Z<br>16'Z<br>16'Z                 |       |       |       |       |       |       |       |       |   | - 0.6               |  |  |  |
| 10.9<br>00.9<br>10.9                 |       |       |       |       |       |       |       |       |   | 9.5                 |  |  |  |
|                                      |       |       |       |       |       |       |       |       |   | -                   |  |  |  |



| Compound <b>3p</b>                   |          |          |          |          |          |          |       |          |          |      |      |      |          |      |            |      |   |              |                 |
|--------------------------------------|----------|----------|----------|----------|----------|----------|-------|----------|----------|------|------|------|----------|------|------------|------|---|--------------|-----------------|
| 17000                                | 16000    | 15000    | 14000    | 13000    | 12000    | 11000    | 10000 | 0006     | 8000     | 7000 | 6000 | 5000 | 4000     | 3000 | 2000       | 1000 | 0 | -1000        |                 |
|                                      | <u> </u> |       | <u> </u> | <u> </u> |      |      |      | <u> </u> |      | ı <u> </u> |      |   | <u>. l i</u> | 0.5             |
|                                      |          |          |          |          |          |          |       |          |          |      |      |      |          |      |            |      |   |              | 1.0             |
|                                      |          |          |          |          |          |          |       |          |          |      |      |      |          |      |            |      |   |              | 1.5             |
|                                      |          |          |          |          |          |          |       |          |          |      |      |      |          |      |            |      | _ |              | 2.0             |
|                                      |          |          |          |          |          |          |       |          |          |      |      |      |          |      |            |      |   |              | 2.5             |
|                                      |          |          |          |          |          |          |       |          |          |      |      |      |          |      |            |      |   |              | 3.0             |
|                                      |          |          |          |          |          |          |       |          |          |      |      |      |          |      |            |      |   |              | 3.5             |
|                                      |          |          |          |          |          |          |       |          |          |      |      |      |          |      |            |      |   |              | - 4.0           |
|                                      |          |          |          |          |          |          |       |          |          |      |      |      |          |      |            |      |   |              | 4.5             |
| 18'S -<br>26'9 -                     |          |          |          |          |          |          |       |          |          |      |      |      |          |      |            |      |   |              | 5.0             |
| 66'9 -<br>68'2 -<br>68'2 -<br>0+'2 - |          |          |          |          |          |          |       |          |          |      |      |      |          |      |            |      |   |              | 5.5<br>f1 (ppm) |
| 24.7 -<br>14.7 -<br>14.7 -           |          |          |          |          |          |          |       |          |          |      |      |      |          |      |            |      |   |              | 6.0             |
| 24.7<br>89.7<br>89.7<br>07.7         |          |          |          |          |          |          |       |          |          |      |      |      |          |      |            |      |   |              | 6.5             |
| 0∠'∠ -<br>68'∠ -<br>06'∠ -<br>£6'∠ - |          |          |          |          |          |          |       |          |          |      |      |      |          |      |            |      |   |              | 7.0             |
| ל 6°∠<br>26°∠<br>96°∠ ר<br>26°∠ ר    |          |          |          |          |          |          |       |          |          |      |      |      |          |      |            |      |   |              | 7.5             |
| 86'2<br>01'8<br>11'8<br>11'8<br>11'8 |          |          |          |          |          |          |       |          |          |      |      |      |          |      |            |      |   |              | 8.0             |
| 8'15<br>8'13<br>99'8 7               |          |          |          |          |          |          |       |          |          |      |      |      |          |      |            |      |   |              | 8.5             |
| 99'8<br>99'8<br>29'8<br>29'8         |          |          |          |          |          |          |       |          |          |      |      |      |          |      |            |      |   |              | - 0.6           |
| 89 <sup>.8</sup><br>51.6             |          |          |          |          |          |          |       |          |          |      |      |      |          |      |            |      |   |              | 9.5             |
|                                      |          |          |          |          |          |          |       |          |          |      |      |      |          |      |            |      |   |              | 0.0             |
|                                      |          |          |          |          |          |          |       |          |          |      |      |      |          |      |            |      |   |              |                 |







# Copy of NMR of 4a






| - 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 4500 | - 4000 | - 3500 | - 3000 | - 2500 | - 2000 | - 1500 | - 1000 | - 500 | 0 |                                          |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|-------|---|------------------------------------------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |        |        |        |        |        |        |       |   | -10                                      |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |        |        |        |        |        |        |       |   | 0                                        |         |
| 58.02 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |        |        |        |        |        |        |        |       |   | 30 21                                    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |        |        |        |        |        |        |       |   | 50 - 4 - 50 - 40 - 50 - 40 - 40 - 40 - 4 |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |        |        |        |        |        |        |       |   | 70 60                                    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |        |        |        |        |        |        |       |   | - 06<br>- 80<br>- 80                     | (       |
| ~ 113.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |        |        |        |        |        |        |       |   | 110                                      | f1 (ppm |
| 5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017<br>5/2017 |        |        |        |        |        |        |        |        |       |   | 130 120                                  |         |
| 14.741<br>14.723<br>141.23<br>141.23<br>141.23<br>141.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |        |        |        |        |        |        |       |   | 150 140                                  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |        |        |        |        |        |        |       |   | 70 160                                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |        |        |        |        |        |        |       |   | 0 180 1                                  |         |
| 25.001 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |        |        |        |        |        |        |       |   | 200 19                                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |        |        |        |        |        |        |       |   | 210                                      |         |

Compound **4c Copy of Chromatographic Analysis of 4c** 





## Copy of NMR of 4c









S45



















Copy of NMR of 4g



















Copy of NMR of 4j



![](_page_63_Figure_0.jpeg)

![](_page_64_Figure_0.jpeg)

![](_page_65_Figure_0.jpeg)

![](_page_66_Figure_0.jpeg)

![](_page_67_Figure_0.jpeg)

![](_page_68_Figure_0.jpeg)

## Compound **4m**

![](_page_69_Figure_1.jpeg)

![](_page_70_Figure_0.jpeg)

## Copy of NMR of 4m

![](_page_71_Figure_0.jpeg)






S75







Copy of NMR of 4o







S80

