Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Oxygen Bridged Bimetallic [Cu-O-Se] Catalyst for Sonogashira Cross-Coupling.

Santosh Kumar Sahu,^a Prabhupada Choudhury,^a Pradyota Kumar Behera,^a Tanmayee Bisoyi,^a Rashmi Ranjan Sahu,^a Abinash Bisoyi,^a Koteswara Rao Gorantla,^b Bhabani S. Mallik,^b Manoj Mohapatra,^c Laxmidhar Rout,^{*a#}

^aDepartment of Chemistry, Berhampur University, Odisha-760007, India, [#]Adjunct faculty, School of Chemical science, IISER Berhampur, Odisha-760010, India; ^bDepartment of Chemistry, IIT Hydrabad, Sangareddy, Medak-502285, Telangana, India, ^cHomi Bhaba National Institute, Anushakti Nagar, Mumbai-400094, Bhaba Atomic Research Centre, Bombay-400085.

Table of Content

Sl.	Details	Page
	Table of content	S1
1	Materials	S2
2	Instrumentation	S2
3	General procedure for Sonogashira cross-coupling:	S3
4	Standardisation tables for solvent, base, catalyst and temperature	S3-S5
5	Characterization of product	S6-S20
6	EDX, SEM and Powdered XRD of CuSeO ₃ . 2H ₂ O	S21-23
7	ICP-OES / AES study	S24-S25
8	Mechanism study by computational DFT study	S25-S28
9	Cartesian Co-ordinates used for DFT Study	S28-S44
10	¹ H (proton) and ¹³ C (carbon) NMR spectra	S45-S117

1. Materials:

Solvents such as acetonitrile (99.8%) 1,4-dioxane (99.8%), DMSO (99.9%), toluene (99.8%), DMF (99.8%), t-BuOH (99.5%) and deuteriated NMR solvents CDCl₃ (99.8%) CD₃CN (99.8%) is purchased from Sigma-Aldrich. All other solvents is purchased from Merck of high purity grade. Toluene and acetonitrile was sparged with nitrogen (N₂) for 5 min at room temperature and stored under nitrogen atmosphere. Cs₂CO₃ (*ReagentPlus*®, 99%) and KOH (99%), K₂CO₃ (99%), KO^tBu(99%) was purchased from Sigma-Aldrich. All phenyl acetylenes were purchased from Sigma and used directly as received. CuSeO₃. 2H₂O was purchased from Sigma-Aldrich as well as synthesized in laboratory. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator using a water bath. ICP standard Pd(NO₃)₂ in HNO₃ from Merck was purchased and used for control experiment.

2. Instrumentation:

NMR spectra were recorded on Bruker Avance III, 400 MHz (IISER Berhampur) and 500 MHz (University of Hydrabad) spectrometers in appropriate solvents CDCl₃ using TMS as internal standard or the solvent signals as secondary standards and the chemical shifts are shown in δ scales. The ¹H and ¹³C NMR spectra were recorded at 400 MHz for ¹H and 100 MHz for ¹³C NMR, respectively. Deuterated solvents were purchased from Sigma-aldrich and used as received. All ¹H NMR experiments are reported in δ units, parts per million (ppm), and were measured relative to the signals for residual chloroform (7.26 ppm) in the deuterated solvents. Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, p = quintet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets...etc, br = broad), coupling constant (Hz) and integration. All ¹³C NMR spectra are reported in ppm relative to CDCl₃ (77.0 ppm). 1,4-di iodobenzene was used as an internal standard for NMR yields from proton analysis. Elemental analysis is performed in 2400 Series II CHNS/O analyzer in CHNS mode. Flash column chromatography was performed by using a 90-120 times weight excess of flash silica gel 60-120 µm from Aldrich. Fractions were analyzed by TLC using TLC silica gel F254 250 µm precoated-plates from Merck and stains (permanganate, 2,4-dnp and CAM) was used for UV-inactive compounds. Melting point is determined in Digital melting point apparatus, Electronics India (EI)-2935 model; Visualized through LCD Screen and is uncorrected by ±5 °C. Internal Standard. XPS is with Al-Ka line at IIT Roorke. HRMS is done at University of Hydrabad and IISER Berhampur in ESI mode. ICP-AES (Inductively Coupled Plasma- Atomic Emission Spectrometry) analysis was carried out at Bhabha Atomic Research Centre (BARC), Trombay, with a Spectro-Arcos SOP unit, Germany. The spectrometer is augmented with a CCD detector array which was used for the analyses. High purity argon plasma was used as the plasma gas, carrier gas and auxiliary gas as well. All the calculations were performed by using Gaussian 091. All the structure were optimized at meta-GGA M06L2-level, with Lanl2dz3 basis set. Effective core potentials were applied for copper, selenium, iodine and potassium atoms. Extra d orbitals were included in the basis set for the selenium and iodine atoms.

3. General Procedure for Sonogashira cross-coupling:

A oven dried 10 mL of two necked round bottom flask (one end with teflon cork and another end connected to N_2 atmosphere) was back filled with nitrogen three times. Then the flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg), halobenzene (0.5 mmol), aryl/alkyl/alkynol/ acetylene (0.6 mmol), KOH (112 mg, 2 eq.) and 1 mL DMF. Then back filled with nitrogen (N₂) for 5 min and placed into an oil bath at temperature 90 °C. The reaction is monitored after every 2 h and up to 48 h with the help of TLC using KMnO₄ stain. After the time specified in the schemes, the reaction mixture was cooled, brine solution was added, work up with ethyl acetate and cold water, finally concentrated in rotor. Then the crude mixture was directly subjected to column for flash column chromatography with 230-400 mesh silica Gel using ethylacetate and hexane as effuent to afford corresponding product. All yields are reported after column chromatography. The products were identified and cited with reported literature.

4. Standardization of reaction

a) Table 1. Standardization of Solvent

1-ethyny	benzene
----------	---------

4-iodo anisole

Entry	Solvent	(° C)	Yield (%) ^{a,b}
1	DMSO	90	5
2	CH ₃ CN	80 ^d	0
3	1.4-dioxane	90	0
4	DMF	90	° 80
5	t-BuOH	80 ^d	0
6	Toluene	90	0
7	THF	70	0
8	EtOH	80	0

^aPhenyl acetylene (1.2 mmol), ^b4-iodo anisole(1 mmol), ^cCuSeO₃.2H₂O catalyst (5 mol%, 11 mg), base 2 equiv. were stirred for 40h, ^dRefluxed using water condenser under respective boiling point.

b) Table 2. Standardization of Base

^aPhenyl acetylene (1.2 mmol), ^b4-iodo anisole(1 mmol), ^cCuSeO₃.2H₂O catalyst (5 mol%, 11 mg), base 2 equiv. were stirred for 40h, ^dRefluxed using water condenser under respective boiling point.

c) Table 3. Standardization of Catalyst

1-ethynylbenzene 4-iodo anisole

1-(2-(4-methoxyphenyl)ethynyl)benzene

Entry	Catalyst	Base	Yield (%) ^{a,b}
1	-	КОН	0

2	CuCl ₂ 2H ₂ O	КОН	5
3	SeO ₂	КОН	0
4	CuSeO ₃ . 2H ₂ O	КОН	90
5	CuSO ₄ . 2H ₂ O	КОН	8

^aPhenyl acetylene (1.2 mmol), ^b4-iodo anisole(1 mmol), ^cCuSeO₃.2H₂O catalyst (5 mol%, 11 mg), base 2 equiv. were stirred for 40 h, ^dRefluxed using water condenser under respective boiling point.

d) Table 4. Standardization at Variant Temperature

1-ethynylbenzene 4-iodo anisole

1-(2-(4-methoxyphenyl)ethynyl)benzene

Entry	Temperature (°C)	Yield (%) ^{a,b}	hr
1	30	0	72
2	60	0	54
3	90	90	40
4	120	30	36

^aPhenyl acetylene (1.2 mmol), ^b4-iodo anisole(1 mmol), ^cCuSeO₃.2H₂O catalyst (5 mol%, 11 mg), base 2 equiv. were stirred for different time, ^dRefluxed using water condenser under respective boiling point.

5. Characterization of Product

1, 2-Diphenylethyne⁵

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and 2 mL DMF. To this iodobenzene (204 mg, 1 mmol), phenylethyne (122 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, ethylacetate and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 92% (164 mg) yield.

White solid

¹H NMR (400 MHz, CDCl₃): δ 7.53–7.55 (m, 4 H), 7.36-34 (m, 4 H).

¹³C NMR (100 MHz, CDCl₃): δ 131.61, 128.34, 128.24, 123.28, 89.36.

1-Methoxy-4-(2-phenylethynyl)benzene³

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and2 mL DMF. To this 4-iodoanisole (234 mg, 1 mmol), phenylethyne (122 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, ethylacetate and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford in 95% (198 mg) yield.

Yellow solid

¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, *J* = 8.0 Hz, 2 H), 7.48 (d, *J* = 8.0 Hz, 2 H), 7.34–7.32 (m, 3 H), 6.89 (d, *J* = 8.2 Hz, 2 H), 3.83 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 159.62, 133.05, 131.04, 128.29, 127.92, 123.60, 113.99, 89.35, 88.05, 55.30.
1-Methyl-4-(2-phenylethynyl)benzene¹⁸

The flask was charged with 5 mol% $CuSeO_3.2H_2O$ (11 mg) and 2 mL DMF. To this 4- iodo toluene(218 mg, 1 mmol), phenylethyne (122 mg 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, ethylacetate and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 90% (172 mg) yield.

¹H NMR (400 MHz, CDCl₃): δ 7.54 (d, *J* =8.0 Hz, 2 H), 7.45 (d, *J* =8.0 Hz, 2 H), 7.36-7.33 (m, 3 H), 7.17 (d, *J* =8.0 Hz, 2 H), 2.38 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 138.37, 131.54, 131.49, 129.38, 129.10, 128.64, 128.30, 128.06, 126.42, 123.48, 120.19, 21.49.

1-Nitro-4-(2-phenylethynyl)benzene³

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and 2 mL DMF. To this 1- iodo-4-nitro benzene (248 mg, 1 mmol), phenylethyne (122 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, ethylacetate and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 96% (107 mg) yield

Yellow solid

¹**H NMR (400 MHz**, CDCl₃): δ 8.21 (d, *J* = 12 Hz, 2 H), 7.68 (d, *J* = 8 Hz, 2 H), 7.58-7.55(m, 2 H), 7.49-7.39 (m, 2 H).

¹³C NMR (100 MHz, CDCl₃): d 147.03, 132.26, 131.84, 129.27, 128.53, 123.64, 122.10, 94.70, 87.54

1-(4-(phenylethynyl)phenyl)ethanone³

The flask was charged with 5 mol% $CuSeO_3.2H_2O$ (11 mg) and 2 mL DMF. To this 4-iodo acetophenone (226 mg, 1 mmol), phenylethyne (122 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N_2 for three times and stirred at 90°C under N_2 . After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, ethylacetate and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 95% (210 mg) yield.

Yellowish solid

¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, *J* = 8 Hz, 2 H), 7.62 (d, *J* = 8 Hz, 2 H), 7.57-7.54(m, 2 H), 7.38-7.36 (m, 3 H), 2.62(s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 197.32, 136.21, 131.74, 131.70, 128.81, 128.44, 128.27, 122.66,

92.71, 88.60, 26.61

4-(phenylethynyl)benzonitrile¹³

The flask was charged with 5 mol% CuSeO₃.2H₂O (11mg) and 2 mL DMF. To this 4-bromo benzonitrile (182 mg, 1 mmol), phenylethyne (122 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, ethylacetate and water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 90% (182 mg) yield.

Colorless liquid

¹H NMR (400 MHz, CDCl₃): δ 7.65-7.61 (m, 4H), 7.56-7.51 (m, 3H), 7.39-7.37 (m, 2H),

¹³C NMR (100 MHz, CDCl₃): δ 133.39, 132.63, 132.06, 132.03, 131.78, 129.11, 128.49, 127.27, 122.21, 118.51, 110.20, 93.77, 87.70.

1-fluoro-4-(phenylethynyl)benzene⁸

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and 2 mL DMF. To this 4-Fluoroiodobenzene (222 mg, 1 mmol), phenylethyne (122 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, ethylacetate and water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 87% (170 mg) yield.

Colorless liquid

¹H NMR (400 MHz, CDCl₃): δ 7.55-7.51 (m, 5H), 7.36 (d, *J* = 8 Hz, 4H),

¹³C NMR (100 MHz, CDCl₃): δ 163.17, 161.36, 138.90, 133.50, 133.42 (J=8 Hz), 132.49, 131.54, 129.19, 128.43, 128.36, 128.31, 121.79, 115.73, 115.51, 89.06, 88.41, 81.54.

1,4-Bis(phenylethynyl)benzene²

The flask was charged with 5 mol% CuSeO₃.2H₂O (11mg) and 2 mL DMF. To this 1,4-diiodo benzene (338 mg, 1 mmol), phenylethyne (122 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, ethylacetate and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 90% (250 mg) yield.

¹H NMR (400 MHz, CDCl₃): δ 7.51-7.54 (m, 8 H), 7.36-7.35 (m, *6* H),

¹³C NMR (100 MHz, CDCl₃): δ 131.62, 131.52, 128.45, 128.38, 123.09, 123.03, 91.21, 89.06.

3-(phenylethynyl)furan⁹

¹H NMR (400 MHz, CDCl₃): δ 7.55-7.53 (m, 3H), 7.38-7.33 (m, 5H).

¹³C NMR (100 MHz, CDCl₃): δ 145.68, 142.90, 132.52, 129.22, 128.46, 128.35, 128.22, 126.48, 121.42, 112.57, 81.57, 73.93.

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and 2 mL DMF. To this 3-bromobenzofuran (196 mg, 1 mmol), phenylethyne (122 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, ethylacetate and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc an d hexanes as eluent) to afford 70% (118 mg) yield. brown solid

2-(p-tolylethynyl)thiophene¹⁶

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and 2 mL DMF. To this 2-lodothiophene (210 mg, 1 mmol), 4-Ethynyltoluene (140 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, ethylacetate and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 75% (138 mg) yield.

Light brown solid

¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, *J* = 8 Hz, 2H), 7.31 (d, *J* = 8 Hz, 2H), 7.19 (d, *J* = 8 Hz, 2H), 7.03 (d, *J* = 8 Hz, 2H), 2.39 (s, 3H).

 ^{13}C NMR (100 MHz, CDCl_3): δ 138.60, 132.37, 131.63, 131.30, 129.20, 129.13, 127.04, 126.99, 123.543, 119.80, 93.19, 81.90, 21.52.

1-methoxy-4-(p-tolylethynyl)benzene¹⁶

The flask was charged with 5 mol% $CuSeO_3.2H_2O$ (11 mg) and 2 mL DMF. To this 4- iodo toluene (218 mg, 1 mmol), 4-ethynyl anisole (158 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, ethylacetate and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 82% (182n mg) yield.

Light Yellowish solid

¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, J=8 HZ, 2H), 7.39 (d, J=8 HZ, 2H), 7.15 (d, J=8 HZ, 2H), 6.88 (d, J=8 HZ, 2H), 3.83(s, 3 H), 2.36(s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 159.45, 138.24, 132.96, 131.33, 129.34, 129.06, 127.75, 120.43, 115.33, 113.96, 88.72, 88.11, 56.29, 21.47.

1,2-bis(4-methoxyphenyl)ethyne¹¹

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and 2 mL DMF. To this 4- iodo anisole (234 mg, 1 mmol), 4-ethynyl anisole (158 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, ethylacetate and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 85% (202 mg) yield.

White solid

¹H NMR (400 MHz, CDCl₃): δ 7.44-7.41 (m, 4 H), 6.93-6.86 (m, 4 H), 3.82(s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 159.39, 134.04, 132.87, 127.41, 126.19, 115.74, 114.11, 113.96, 87.94, 55.29

1-(4-((4-methoxyphenyl)ethynyl)phenyl)ethanone¹¹

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and 2 mL DMF. To this 4-iodo acetophenone (246 mg, 1 mmol), 4-ethynyl anisole (158 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, ethylacetate and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 90% (226 mg) yield.

Light Yellowish solid

¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, *J* = 8 Hz, 2 H), 7.59 (d, *J* = 8 Hz, 2 H), 7.50 (d, *J* = 8 Hz, 2 H), 6.90 (d, *J* = 8 Hz, 2 H), 3.83(s, 3H), 2.60(s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 197.31, 160.03, 135,85, 133.25, 131.44, 128.58, 128.23, 114.68, 114.09, 92.94, 87.49, 55.29, 26.55.

1-methoxy-4-((4-nitrophenyl)ethynyl)benzene¹¹

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and2 mL DMF. To this 1-iodo-4-nitro benzene (248 mg, 1 mmol), 4-ethynyl anisole (158 mg, 1.2 mmol), KOH (112mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, ethylacetate and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 93% (236 mg) yield.

Yellow solid

¹H NMR (400 MHz, CDCl₃): δ 8.21 (d, *J* = 8 Hz, 2 H), 7.63 (d, *J* = 8 Hz, 2 H), 7.51(t, *J* = 12 Hz, 2H), 6.92 (d, *J* = 12 Hz, 2H), 3.84 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 160.40, 146.66, 133.42, 131.96, 130.67, 123.59, 114.19, 114.10, 95.12, 86.61, 55.13.

1-ethyl-4-(p-tolylethynyl)benzene¹⁵

The flask was charged with 5 mol% $CuSeO_{3.}2H_{2}O$ (11 mg) and 2 mL DMF. To this 1-bromo-4-ethyl benzene(184 mg, 1.2 mmol), 4-ethynyl toluene(140 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, ethylacetate and cold water

(20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 90% (198 mg) yield. yellow solid

¹H NMR (400 MHz, CDCl₃): δ 7.46-7.41(m, 4H), 7.19-7.057(m, 4H), 2.67(q, J=4Hz, 2H),

2.37 (s, 3H), 1.25 (t, J=8 Hz, 3H),

¹³CNMR(100MHz,CDCl₃): δ 144.46, 139.47, 138.14, 132.38, 131.51, 131.43, 129.20, 129.06, 127.87, 126. 37, 126.30, 120.62, 120.40, 118.79, 88.85, 81.53, 28.80, 21.59, 15.33.

1-fluoro-4-(phenylethynyl)benzene¹⁶

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and 2 mL DMF. To this 4-Fluoroiodobenzene (222 mg, 1 mmol), 4-ethynyl toluene (140 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, ethylacetate and water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 88% (184 mg) yield.

Colorless liquid

¹H NMR (400 MHz, CDCl₃): δ 7.52-7.49 (m, 2H), 7.44 (d, *J* = 8 Hz, 2H), 7.16 (d, *J* = 8 Hz, 2H), 7.04 (t, *J* = 8 Hz, 2H), 2.38(s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 163.61, 161.13, 138.46, 133.41, 133.33, 132.37, 131.42, 129.19, 129.12, 119.97, 115.46, 115.38, 89.19, 87.61, 21.59.

1,2-di-p-tolylethyne⁷

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and 2 mL DMF. To this 4- iodo toluene (218 mg, 1 mmol), 4-ethynyl toluene (140 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, ethylacetate and water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 90% (186 mg) yield.

Colorless liquid

¹H NMR (400 MHz, CDCl₃): δ 7.36 (d, *J* = 8 Hz, 4H), 7.16 (t, *J* = 4 Hz, 4H),

¹³C NMR (100 MHz, CDCl₃): δ 139.46, 138.14, 132.36, 131.40, 129.33, 129.19, 129.06, 127.59, 126.28, 120.36, 118.75,88.85, 81.52, 73.43, 21.46.

1-(tert-butyl)-4-(phenylethynyl)benzene¹⁴

$$\rightarrow \swarrow = \checkmark$$

The flask was charged with 5 mol% $CuSeO_3.2H_2O$ (11 mg) and 2 mL DMF. To this iodo benzene(204 mg, 1 mmol), 4-tert-Butyl phenylacetylene (190 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes,

the reaction mixture was cooled and worked up with brine solution, ethylacetate and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 91% (214 mg) yield. yellow solid

¹H NMR (400 MHz, CDCl₃): δ 7.55-7.52(m, 2H), 7.49-7.47(m, 2H), 7.39-7.33(m, 5H), 1.34 (s, 9H). ¹³CNMR(100MHz,CDCl₃):δ 151.97, 140.73, 137.89, 131.56, 131.32, 128.29, 128.04, 125.33, 123.51, 120. 23, 89.52, 88.71, 34.78, 31.17

1-(tert-butyl)-4-((4-fluorophenyl)ethynyl)benzene⁴

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and 2 mL DMF. To this 4-fluoroiodobenzene (222 mg, 1 mmol), 4-tert-Butyl phenylacetylene (190 mg, 1,2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, ethylacetate and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 94% (118 mg) yield.

¹H NMR (400 MHz, CDCl₃): δ 7.54-7.47(m, 4H), 7.40(d, *J* = 8 Hz, 2H), 7.05 (d, *J* = 8 Hz, 2H), 1.35 (s, 9H).
¹³CNMR(100MHz, CDCl₃):δ 163.61, 161.13, 151.60, 133.44, 133.36, 132.24, 131.27, 125.45, 125.36, 120.
04, 115.67, 115.45, 189.18, 87.63, 34.77, 31.15

1-(tert-butyl)-4-((4-methoxyphenyl ethynyl)benzene¹⁹

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and 2 mL DMF. To this iodo anisole (234 mg, 1 mmol), 4-tert-Butyl phenylacetylene (190 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90 °C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, ethylacetate and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 92% (244 mg) yield. yellow solid

¹H NMR (400 MHz, CDCl₃): δ 7.48(t, *J* = 4 Hz, 4H), 7.38(d, *J* = 8 Hz, 2H), 6.90(d *J* = 12 Hz, 2H), 3.83(s, 3H), 1.34 (s, 9H).

¹³CNMR(100MHz,CDCl₃): 8 159.47, 151.15, 132.98, 131.15, 127.58, 125.96, 120.54, 115.63, 114.09, 113.9 4, 88.65, 88.16, 55.25, 34.72, 31.16.

1-methyl-3-(phenylethynyl)benzene¹²

H₃Ć

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and 2 mL DMF. To this iodo benzene(204 mg, 1 mmol), 3-ethynyl toluene (140 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction

mixture was cooled and worked up with brine solution, ethylacetate and water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 90% (172 mg) yield.

Colorless liquid

¹**H NMR (400 MHz**, CDCl₃): δ 7.59-7.57 (m, 2H), 7.41-7.37 (m, 5H), 7.28 (d, *J* = 8 Hz, 1H), 7.20 (d, *J* = 8 Hz, 1H), 2.40 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 137.99, 132.17, 131.58, 129.14, 128.67, 128.31, 128.22, 128.15, 126.45, 123.36, 123.05, 89.54, 89.01, 21.21.

1-methyl-3-(p-tolylethynyl)benzene¹⁵

H₃C The flask was char

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and 2 mL DMF. To this 4- iodo toluene (218 mg, 1 mmol), 3-ethynyl toluene (140 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, ethylacetate and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 89% (184 mg) yield.

White solid

¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, *J* = 8 Hz, 2H), 7.35 (t, *J* = 8 Hz, 2H), 7.24 (t, *J* = 8 Hz, 1H), 7.15 (t, *J* = 8 Hz, 2H), 2.38 (s, 3 H), 2.36 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 138.28, 137.95, 132.12, 131.47, 129.08, 128.97, 128.60, 128.20, 126.37, 123.57, 123.24, 120.26, 89.19, 88.87, 21.48, 21.22.

1-((4-methoxyphenyl)ethynyl)-3-methylbenzene¹¹

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and 2 mL DMF. To this iodoanisole (234mg, 1 mmol), 3-ethynyl toluene (140 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, ethylacetate and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 86% (190 mg) yield.

Yellow semi-liquid

¹H NMR (400 MHz, CDCl₃): δ 7.48 (d, *J* = 8 Hz, 2 H), 7.35-7.31 (m, 2 H), 7.23(t, *J* = 8 Hz, 1H), 7.14 (d, *J* = 8 Hz, 1H), 7.89(d, *J* = 8 Hz, 2H), 3.83 (s, 3 H), 2.35(s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 159.55, 137.95, 133.02, 132.03, 128.83, 128.51, 128.19, 127.66, 115.49, 113.97, 89.00, 88.21, 55.29, 21.23.

1-methoxy-2-(phenylethynyl)benzene³

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and 2 mL DMF. To this iodo benzene (204mg, 1 mmol), 2-ethynyl anisole (158 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, ethylacetate and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 93% (184 mg) yield.

Yellow liquid

¹**H NMR (400 MHz**, CDCl₃): δ 7.58 (d, *J* = 8.0 Hz, 2 H), 7.51 (d, *J* = 8.0 Hz, 1 H), 7.34–7.31 (m, 4 H), 6.96-6.90 (m, 2 H), 3.92 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 159.93, 133.57, 131.65, 129.73, 128.22, 128.08, 123.57, 120.48, 110.73, 93.41, 85.70, 55.85.

1-methoxy-2-(p-tolylethynyl)benzene¹⁰

The flask was charged with 5 mol% $CuSeO_3.2H_2O$ (11 mg) and 2 mL DMF. To this 4- iodo toluene (218 mg, 1 mmol), 2-ethynyl anisole (158 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, ethylacetate and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 90% (200 mg) yield.

Yellow liquid

¹**H NMR (400 MHz**, CDCl₃): δ 7.52-7.46 (m, 3 H), 7.30 (d, *J* = 8 Hz, 1H), 7.17 (d, *J* = 8 Hz, 1H), 6.96-6.90 (m, 2H), 3.92(s, 3 H), 2.37(s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 159.83, 138.15, 133.50, 131.52, 129.52, 128.97, 120.44, 112.64, 110.67, 93.60, 84.99, 55.80, 21.46.

1-methoxy-2-((4-methoxyphenyl)ethynyl)benzene⁶

OMe

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and 1 mL DMF. To this 4- iodoanisole(234 mg, 1 mmol), 2-ethynyl anisole (158 mg, 1.2 mmol),, KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, ethylacetate and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 88% (210 mg) yield.

Brownish liquid

¹H NMR (400 MHz, CDCl₃): δ 7.52-7.48 (m, 3 H), 7.29 (d, *J* = 8 Hz, 1H), 6.95-6.86 (m, 4 H), 3.91(s, 3 H), 3.82(s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ 197.31, 160.03, 135.85, 133.25, 131.44, 128.58, 128.23, 114.68, 114.09, 92.94, 87.49, 55.29, 26.55

1-(4-((2-bromophenyl)ethynyl)phenyl)ethanone¹⁷

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and 2 mL DMF. To this 4- iodo acetophenone (246 mg, 1 mmol), 1-bromo-2-ethynyl benzene (218 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, ethylacetate and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 80% (240 mg) yield. yellow solid

¹**H NMR (400 MHz**, CDCl₃): δ 7.96 (d, *J* = 8 Hz, 2H), 7.67-7.63 (m, 3H), 7.59(d, *J* = 8 Hz, 1H), 7.32(d, *J* = 8 Hz, 1H), 7.22 (t, *J* = 8 Hz, 1H), 2.62 (s, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 197.83, 136.56, 133.39, 132.57, 131.80, 129.93, 128.28, 127.77, 127.12, 125.80, 92.92, 91.14, 26.63.

1-bromo-2-((4-nitrophenyl)ethynyl)benzene¹⁷

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and 2 mL DMF. To this 1-iodo-4-nitro benzene (248 mg, 1 mmol), 1-bromo-2-ethynyl benzene (218 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, ethylacetate and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 81% (244 mg) yield.

¹**H NMR (400 MHz**, CDCl₃): δ 8.23 (d, *J* = 8 Hz, 2H), 7.72 (d, *J* = 8 Hz, 2H), 7.65(d, *J* = 8 Hz, 1H), 7.58 (d, *J* = 8 Hz, 1H), 7.33(t, *J* = 8 Hz, 1H), 7.24 (d, *J* = 8 Hz, 1H),

¹³C NMR (100 MHz, CDCl₃): δ 147.21, 133.47, 132.64, 132.36, 130.38, 129.77, 127.19, 125.90, 124.31, 123.63, 92.99, 91.69.

Trimethyl(phenylethynyl)silane^[20]

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and 2 mL DMF. To this iodo benzene(204 mg, 1 mmol), Trimethyl silyl acetylene (186 mg, 2 mmol), KOH(112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 60 °C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, CH₂Cl₂ and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 70% as volatile liquid (122 mg) yield.

¹H NMR (400 MHz, CDCl₃): δ = 7.72 (d, J=8 Hz, 2H), 7.33 (t, J=8 Hz, 1H), 7.11 (t, J=8 Hz, 2H), 0.07 (s, 9H) ¹³C NMR (100 MHz, CDCl₃): δ 138.65, 137.43, 132.13, 128.99, 128.55, 127.73, 126.72

Trimethyl(naphthalen-1-ylethynyl)silane

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and 2mL DMF. To this 1- iodo naphthalene (127 mg, 0.5 mmol), Trimethyl silyl acetylene (186 mg, 2 mmol), KOH (224 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 60 °C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, CH₂Cl₂ and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 73% as volatile liquid (162 mg) yield. ¹H NMR (400 MHz, CDCl₃): δ = 8.10 (d, J=8 Hz, 2H), 7.85 (d, J=8 Hz, 1H), 7.78 (d, J=8 Hz, 1H), 7.58 (t, J=8 Hz, 1H), 7.54 (t, J=8 Hz, 1H), 7.19 (t, J=8 Hz, 2H), 0.07 (s,9H)

¹³C NMR (100 MHz, CDCl₃): δ 138.65, 137.43, 132.13, 128.99, 128.55, 127.73, 126.72, 105.14, 100.0

CAS- Sigma-aldrich: 104784-51-2 4-(oct-1-yn-1-yl)benzonitrile^[20]

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and 2 mL DMF. To this 4- cyano iodobenzene (228 mg, 1 mmol), 1-octyne (132 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, CH_2Cl_2 and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 98% as volatile liquid (208 mg) yield.

¹H NMR (400 MHz, CDCl₃): δ = 7.57 (d, J=8Hz, 2H), 7.46 (d, J=, 8 Hz, 2H), 2.42 (t, J=8 Hz, 2H), 1.61 (t, J=6 Hz, 2H), 1.44 (t, J=6 Hz, 2H), 1.32 (t, J=6 Hz, 2H), 0.90 (t, J=8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 132.07, 131.89, 118.64, 110.74, 95.72, 79.41, 76.78, 31.28, 28.57, 28.39, 22.51, 19.42, 14.02

1-methoxy-4-(oct-1-yn-1-yl)benzene ^[21]

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and 2 mL DMF. To this 4-methoxy iodobenzene (224 mg, 1 mmol), 1-octyne (132 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, CH_2Cl_2 and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 97% as volatile liquid (210 mg) yield.

¹H NMR (400 MHz, CDCl₃): δ = 7.34 (d, J=8Hz, 2H), 6.85 (dd, J=, 8 Hz, 8Hz, 2H), 3.80(3, 3H), 2.38 (t, J=8 Hz, 2H), 1.61 (t, J=6 Hz, 2H), 1.44 (t, J=6 Hz, 2H), 1.31 (t, J=6 Hz, 2H), 0.90 (t, J=8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ =158.94, 132.83, 116.27, 113.77, 113.39, 88.80, 80.20, 55.23, 31.37, 28.84, 28.61, 22.56, 19.40, 14.05.

2-(oct-1-yn-1-yl)thiophene^[22]

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and 2 mL DMF. To this 2- iodothiopene (210 mg, 1 mmol), 1-octyne (132 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, CH_2Cl_2 and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 99% as volatile liquid (190 mg) yield.

¹H NMR (400 MHz, CDCl₃): δ= 7.34 (s, 1H), 7.22 (t, J=4 Hz, 1H), 7.07 (d, J=2 Hz, 1H), 2.38 (t, J=8 Hz, 2H), 1.61 (t, J=8 Hz, 2H), 1.44 (t, J=8 Hz, 2H), 1.31 (t, J=8 Hz, 2H), 0.90 (t, J=8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ =130.0, 127.43, 124.91, 123.02, 89.94, 75.51, 31.35, 28.70, 28.61, 22.54, 19.37, 14.04.

4-(4-methoxyphenyl)but-3-yn-1-ol^[23]

.OH

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and 2 mL DMF. To this 4-methoxyiodobenzene (234 mg, 1 mmol), but-3-yn-1-ol (84 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, CH_2Cl_2 and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 95% as volatile liquid (166 mg) yield.

¹H NMR (400 MHz, CDCl₃): δ= 7.36 (d, J=8 Hz, 2H), 6.83 (d, J=8 Hz, 2H), 3.80 (t, J=6 Hz, 2H), 2.68 (t, J=6 Hz, 2H), 1.86 (s, 1H)

¹³C NMR (100 MHz, CDCl₃): =159.31, 133.02, 115.41, 113.86, 84.63, 82.32, 61.22, 55.25, 23.83

CAS: 52999-15-2

4-(4-fluorophenyl)but-3-yn-1-ol^[24]

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and 2 mL DMF. To this 4-fluoro iodobenzene (220 mg, 1 mmol), but-3-yn-1-ol (84 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, CH_2Cl_2 and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 97% as volatile liquid (158 mg) yield

¹H NMR (400 MHz, CDCl₃): δ= 8.10 (dd, J=4Hz, 4 Hz, 2H), 6.98 (d, J=8 Hz, 2H), 3.81 (t, J=8 Hz, 1H), 2.68 (t, J=6 Hz, 1H), 1.84 (s, 1H)

¹³C NMR (100 MHz, CDCl₃): = 163.05, 161.02, 133.52, 133.43, 119.36, 115.69, 115.37, 85.99, 61.12, 23.73

4-(3-nitrophenyl)but-3-yn-1-ol^[25]

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and 2 mL DMF. To this 4-nitro iodobenzene (250 mg, 1 mmol), but-3-yn-1-ol (84 mg, 1.2 mmol), KOH (112 mg, 2 eq.) were added, back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, CH_2Cl_2 and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 96% as volatile liquid (184 mg) yield

¹H NMR (400 MHz, CDCl₃): δ= 8.24 (s, 1H), 8.14 (d, J=8 Hz, 1H), 7.71 (d, J=8 Hz, 1H), 7.46 (t, J=8 Hz, 1H), 3.85 (t, J=8 Hz, 2H), 2.71 (t, J=6 Hz, 2H), 1.98 (s, 1H)

¹³C NMR (100 MHz, CDCl₃): = 147.99, 137.36, 129.20, 126.48, 125.18, 122.61, 89.65, 80.02, 60.88, 23.66

1,3,5-tris(phenylethynyl)benzene¹:

The flask was charged with 5 mol% CuSeO₃.2H₂O (11 mg) and 2 mL DMF. To this To this 2,4,6-tribromobenzene (157 mg, 0.5 mmol), phenylethyne (162 mg, 1.5 mmol), KOH (112 mg, 2 eq.) were added back filled with N₂ for three times and stirred at 90°C under N₂. After the time specified in the reaction schemes, the reaction mixture was cooled and worked up with brine solution, ethylacetate and cold water (20 x 5) ml. The organic layer was separated and concentrated in rotor. The product was isolated by flash chromatography (EtOAc and hexanes as eluent) to afford 94% (178 mg) yield.

¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, *J* = 4 Hz, 3 H), 7.57 (t, *J* = 4 Hz, 6 H), 7.40-7.38(m, 9 H), ¹³C NMR (100 MHz, CDCl₃): δ 134.00, 131.67, 128.57, 128.38, 124.00, 122.77, 90.51, 87.82.

Reference

- 1. Chow, H-F.; Wan, C-W.; Low, K-H.; Yeung, Y-Y. J. Org. Chem. 2001, 66, 1910-1913.
- 2. Beeby, A.; Findlay, K.; Low, P.J.; Marder, T. B. J. Am. Chem. Soc. 2002, 124, 8280-8284
- 3. Urgaonkar, S.; Verkade, J. G. J. Org. Chem. 2004, 69, 5752-5755

- 4. He, H. Wu, Tetrahedron. 2004, 45, 3237-3239
- 5. Li, J-H.; Liang, Y.; Xie, Y-X. J. Org. Chem. 2005, 70, 4393-4396
- 6. Rubin, M.; Trofimov, A.; Gevorgyan, V. J. Am. Chem. Soc. 2005, 127, 10243-10249
- 7. Mino, T.; Shirae, Y.; Saito, T.; Sakamoto, M.; Fujita, T. J. Org. Chem. 2006, 71, 9499-9502
- 8. Mao, J.; Xie, G.; Wu, M.; Guo, J.; Ji, S. Adv. Synth. Catal. 2008, 350, 2477
- 9. Saleh, S.; Picquet, M.; Meunier, P.; Hierso, J-C. Tetrahedron. 2009, 65, 7146-7150
- 10. Chen, H-J.; Lin, Z-Y.; Li, M-Y.; Lian, R-J.; Xue, Q-W.; Chung, J-L.; Chen, S-C.; Chen, Y-J. *Tetrahedron.* **2010**, *66*, 7755-7761.
- 11. Hu, H.; Yang, F.; Wu, Y. J. Org. Chem. 2013, 78, 10506-10511
- 12. Gallop, C. W. D.; Chen, M-T.; Navarro, O. Org. Lett. 2014, 16, 3724–3727
- 13. Lu, H.; Wang, L.; Yang, F.; Wu, R.; Shen, W. RSC Adv. 2014, 4, 30447-30452
- 14. Yang, Y.; Lim, J. F. Y.; Chew, X.; Robins, E. G.; Johannes, C.W.; Lima, Y. H.; Jong H. *Catal. Sci. Technol.* **2015**, *5*, 3501-3506.
- 15. Qian, L-W.; Sun, M.; Dong, J.; Xu, Q.; Zhou, Y.; Yin, S-F. J. Org. Chem. 2017, 82, 6764-6769
- 16. He, J.; Yang, K.; Zhao, J.; Cao, S. Org. Lett. 2019, 21, 9714-9718
- 17. Naveen, K.; Perumal, P. T.; Cho, D-H. Org. Lett. 2019, 21, 4350-4354
- 18. Martek, B. A.; Gazvoda, M.; Urankar, D.; Kosmrlj, J. Org. Lett. 2020, 22, 4938-4943
- 19. Liang, L.; Niu, H-Y.; Li, R-L.; Wang, Y-F.; Yan, J-K.; Li, C-G.; Guo, H-M. Org. Lett. 2020, 22, 68420-684
- 20. Arde, P.; Reddya, V.; Anand, R. V. RSC Adv. 2014, 4, 49775-49779
- 21. Roberts, G. M.; Lua, W.; Woo; L. K. RSC Adv. 2015, 5, 18960-18971
- 22. Yang, Y.; Fen, J.; Lim, Y.; Chew, X.; Robins, E. G.; Johannes, C. W.; Lima, Y. H.; Jong, H. *Catal. Sci. Technol.*, **2015**,5, 3501-3506
- 23. Gurram, R. K.; Rajesh, M., Reddy Singam, M. K.; Nanubolu, J. B.; Reddy, M. S.; Organic Letters, 2020, 22, 5326-5330.
- 24. F. Shi, J. P. Waldo, Y. Chen, Richard C. Larock, Organic Letters, 2008, 10, 2409-2412.

6: EDX, SEM and Podered XRD of CuSeO₃. 2H₂O

Figure S1: EDXRF spectra of CuSeO₃. 2H₂O (EDX Sigma)

Element	Арр	Intensity	Weight%	Weight%	Atomic%
	Conc.	Corrn.		Sigma	
O K	34.83	1.2604	37.44	0.60	72.66
Cu L	12.66	0.5983	28.68	0.59	14.02
Se L	13.69	0.5471	33.88	0.58	13.32
Totals			100.00		

Table 5: EDXRF spectra of CuSeO₃. 2H₂O (EDX Sigma)

Figure S2: Catalytic Surface of CuSeO₃. 2H₂O in FE-SEM (Sigma)

Figure S3: IR of CuSeO₃. 2H₂O catalyst

IR characterization: 3327 cm⁻¹ (O-H vibration), 1555 cm⁻¹ (Se-O streching), 1429 cm⁻¹ (Se=O streching), 671 cm⁻¹ (Cu-O streching), 584 cm⁻¹ (Cu-O-Se streching frequency).

Reference: a) R.J.M. Konings, A.S. Booij , A. Kovacs, Chemical Physics Letters **1998**, 292, 447–45; b) N. Dukstiene, L. Tatariskinaite, M. Andrulevicius, Materials Science-Poland, **2010**, 28, 93-103.

Figure S4: Powder XRD of CuSeO₂.2H₂O catalyst (Sigma)

The X-ray diffraction analysis has been used to study the crystal structure of materilas. The powder XRD patterns at room temperature were recorded by using Rigaku model TTRX-III equipped with rotating anode-based Cu-K α radiation (λ = 1.5418 A°). X-ray diffractometer was operating at 100mA and 50kV. XRD machine was operated with the following conditions: (i) 20-0 scanning mode, (ii) fixed monochromater (iii) continuous scanning, and (iv) measurement angle between 10-80° with 0.02° step.

7. ICP- AES study

ICP-AES (Inductively Coupled Plasma- Atomic Emission Spectrometry) analysis was carried out at Bhabha Atomic Research Centre (BARC), Trombay, with a Spectro-Arcos SOP unit, Germany. The spectrometer is augmented with a CCD detector array which was used for the analyses. High purity argon plasma was used as the plasma gas, carrier gas and auxiliary gas as well. To establish the calibration curves for the analyses, ICP standard solution purchased from MERCK was used. All measurements were done in triplicate. High pure Ar gas (total flow rate of 12 liters per minute) was also used for flushing of the detector before all the measurements to minimize the background. The detector set consists of thermally stabilized linear arrays of CCD detectors (3648 pixels/array). The detection limits are mentioned in the individual figures itself for each spectral line for easy ref. There are five analytical lines of 'Pd' available in the instrumental library on which measurements were done. All the samples were dissolved in 1M nitric acid (prepared from AR grade, Merck).

Figure S5: ICP-AES (Inductively Coupled Plasma- Atomic Emission Spectrometry) analysis was carried out at Bhabha Atomic Research Centre (BARC), Trombay, with a Spectro-Arcos SOP unit, Germany.

Procedure:

All experiments were repeated thrice for consistency of result. All analytes were dissolved in minimum quantity of 1M HNO₃ (prepared from AR grade, Merck) under IR lamp. ICP standard of $Pd(NO_3)_2$ solution purchased from Merck was used as control. The analytes were fed directly into the ICP after digestion with 1M HNO₃. Calibration curves were established for the ICP standard of $Pd(NO_3)_2$ solution after which the actual samples were run. There are 5 analytical lines (229.651, 324.270, 340.458, 344.140, 360.955 for palladium). The spectrometer can detection up to 0.2 ppm (200 ppb). All the four analytes showed no palladium impurity up to 0.2 ppm (200 ppb).

References:

(20) For ICP-OES Analysis See: Morrison, C.; Sun, H.; Yao, Y.; Loomis, R. A.; Buhro, W. E.; Methods for the ICP-OES Analysis of Semiconductor Materials. *Chem. Mater.* **2020**, 32, 1760–1768;

Instrumentation Details for ICP-OES/AES

Table 6. Instrumentation Details. ICP-AES spectrometer Spectro-Arcos SOP, Germany.Version 2.0.0.22336 software.

Gas Flow	
Plasma	15 L/min
Auxiliary	0.2 L/min
Nebulizer	0.70 L/min
RF Power	1300 Watts
Pump Flow Rate	1.5 mL/min
Spectrometer	
Resolution	High (0.0035 nm)
Read Time (sec)	Min 5; Max 20
Delay Time	60
Replicates	3
Calibration	Hg Realignment at 253 nm
Plasma	
Conditions	Same for all elements
Plasma View	Axial
Source Equilibration Delay	15 sec
Peristaltic Pump	
Sample Flow Rate	1.50 mL/min
Flush Time	60 sec

8. Mechanism Study by Computational DFT Study

All the calculations were performed by using Gaussian 09^1 . We optimized all the structure at meta-GGA M06L²-level, with Lanl2dz³ basis set. Effective core potentials were applied for copper, selenium, iodine and potassium atoms. Extra d orbitals were included in the basis set for the selenium and iodine atoms. All the optimized structures were confirmed as the energetically minimized structures by the analytical frequency calculations with no imaginary value. Singlepoint electronic energies were generated for all optimized structures at M06-2X⁴ level with SDD⁵ for heavy atoms (Cu, Se, I and K) and 6-311+G(2d,p) basis set was used small atoms. The solvent effect of the reaction was considered by calculating the single-point energies through the SMD⁶ model at M062X/SDD (Cu, Se, I and K)/6-311+G(2d,p) level. Dimethylformamide was used as a solvent. All the energy calculations were performed at a temperature of 363.15 K. The final free energies were calculated as

$G = E_{M062X/SDD/6-311G(2d,p)} + G_{corr} + \Delta G_{sol} (G_{sol}-G_g)$

The free energy correction (G_{corr}) was taken at M06L/Lanl2dz level. The ΔG_{sol} is the difference in the free energies between the solvent phase to the gas phase at M062X/SDD/6-311+G(2d, p).

Figure S6: Free energy profile for CuSeO₃.2H₂O mediated Sonogashira cross-coupling reaction using DFT Study

Figure S7: Plausible mechanism for CuSeO₃.2H₂O mediated Sonogashira cross-coupling reaction using DFT

DMF is believed to open the [Se-O-Cu] bridge of CuSeO₃. 2H₂O A at an initial stage forming precursor complex **B** by forming solvated complex **AH** with (ΔG_{A-AH} =1.12 Kcal/Mol) (Figure 3).²³⁻²⁸ The precursor complex AH undergoes oxidative addition of iodobenzene to generate successor complex **B** with (ΔG_{A-AH} =2.71Kcal/mol) through transition state TS_{AH-B} $(\Delta G^{\neq}=18.91 \text{ Kcal/mol})$. The complex **B** could then undergo transmetallation with phenyl acetylene by two possible pathways. In the first pathway potassium plays the counter ion role. Complex B is transformed to C_k (K=potassium) with a free energy of 21.71 kcal/mol through transition state TS_{BCk}^{\neq} = 32.23; Whereas subsequent reductive elimination of C_k results in formation of stable intermediate D_k (ΔG^{\neq} =-25.3 Kcal/mol) and diaryl acetylene product leaving $A_{\rm H}$ metal complex through transition. state TS_{CkD}[#] = 30.22 Kcal/mol. Alternatively; complex B is transformed to C_H (H=hydrogen) via two ways; with free energy -23.72 Kcal/mol with transmetallation of phenylacetylene through transition state TS_{BCH}^{±1}=36.82 Kcal/ mol or with free energy -42.81 Kcal/mol with transmetallation of the potassium salt of phenyl acetylene through transition state $TS_{BCH}^{\neq 2}$ = 32.72 Kcal/mol to give the final complex C_H. whereas subsequent reductive elimination of C_H results in formation of the stable intermediate A_H (ΔG^{\neq} =-25.65 Kcal/mol) and diarylacetylene product leaving A_{H} metal complex through transition state TS_{CH-DH}[#]=40.46 Kcal/mol. As per the reduction potential data, both oxidative addition, transmetallation and reductive elimination was

supposed to occurs at the copper centre assisted by the selenium metal.¹⁷⁻¹⁸ The mechanism of A-A_s-A_H-B to C_k-D_K (activation barriers 21 and 30 kcal/mol) is more plausible in comparison to C_H-D_H (36 and 40 kcal/mol) activation barriers 36 and 40 kcal/mol. The activation energy barrier value is agreeing with experimental findings that correspond to relatively longer reaction time at 90 °C.

References

(1)Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A., Jr.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N.J.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, Ö.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian 09, Revision **C.01**, Gaussian, Inc., Wallingford CT, 2009.

(2)Zhao, Y.; Truhlar, D. G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions; *J. Chem. Phys.* **2006**, *125*, 194101.

(3) Hay, P. J.; Wadt, W.R. *Ab initio* effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to H. *J. Chem. Phys.* **198**5, 82, 270.

(4) Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functional, *Theoretical Chemistry Accounts* **2008**, *120*, 215-241.

(5)Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Energy-adjusted*ab initio* pseudopotentials for the second and third row transition elements. *Theoretica chimica acta* **1990**, 77, 123-141.

(6) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions *J. Phys. Chem. B* **2009**, *113*, 6378–6396

9: Cartesian Co-ordinates used for DFT Study:

0.47894800	-0.08979000	-0.00016100
0.60862700	1.39872000	0.00003300
1.14861400	1.71044700	-0.89171800
-0.39292400	1.82171400	-0.00417100
1.14084300	1.71073800	0.89640400
1.48430200	-0.90939400	-0.00000500
1.31377500	-1.98162000	-0.00014400
2.50269800	-0.53949700	0.00016300

С	-0.93667600	-0.66062400	0.00009400
Н	-0.92950700	-1.75457200	0.00048800
0	-1.88420700	0.08613900	-0.00007800

\$			
0	-0.75030500	-0.35993200	-1.02801600
0	-1.27357800	-0.22454700	1.36435600
0	-2.80083900	1.41189800	-0.33430600
Cu	0.40751500	-0.22933200	0.56239900
Se	-2.32708300	-0.15474200	-0.13010200
Ν	2.28294800	-0.24195200	-0.22270300
С	3.31864500	-0.67190700	0.76740800
Н	4.30447300	-0.70510900	0.29502500
Н	3.35021400	0.04526700	1.58597700
Н	3.05833700	-1.66200400	1.14146000
С	2.17379100	-1.14793400	-1.42002800
Н	1.32919900	-0.82756700	-2.03173400
Н	3.10470500	-1.12836800	-1.99369200
Н	1.97918400	-2.16261400	-1.07432000
С	2.35006900	1.16862400	-0.57566400
Н	1.72680700	1.39926200	-1.45063700
0	3.00151300	1.99182300	0.06927200

0	3.18811600	0.62573300	0.95313300
0	1.70379100	-1.16922700	-0.57917900
0	0.48080800	0.88205400	0.28037900
Cu	-0.15976400	-1.14192400	0.17872600
Se	2.00330700	0.52087200	-0.42910800
N	-2.69289000	-0.07268600	0.14896100
С	-3.36066000	-0.40423000	-1.11580600
Н	-4.15930000	-1.12890900	-0.94069500
Н	-3.77790000	0.51287100	-1.52877800
Н	-2.64024300	-0.82994100	-1.82107900
С	-1.99883100	-1.09797700	0.86541900

-1.88617900	-0.84509900	1.92431100
-2.46220600	-2.07803500	0.72035100
2.91483600	0.10275800	1.74047200
-2.63891000	1.25855800	0.56540900
-2.05662600	1.38432700	1.48716900
-3.19409200	2.19380100	-0.04283400
	-1.88617900 -2.46220600 2.91483600 -2.63891000 -2.05662600 -3.19409200	-1.88617900-0.84509900-2.46220600-2.078035002.914836000.10275800-2.638910001.25855800-2.056626001.38432700-3.194092002.19380100

C C C H C H C H H H I

.

-0.57168100	0.00002600	-0.00000400
-1.26001000	1.22335300	-0.00000200
-1.25999100	-1.22334500	0.0000000
-2.66447400	1.21366900	0.00000400
-0.71968200	2.16352400	-0.00000100
-2.66442800	-1.21369400	0.0000200
-0.71959400	-2.16347500	0.00000100
-3.36827300	-0.00001100	-0.00000200
-3.20206200	2.15632500	0.0000200
-3.20203700	-2.15633700	0.0000000
-4.45300200	-0.00004900	0.0000200
1.56659500	0.00000000	0.0000000

0	-1.55694600	-0.24253000	1.32194400
0	-3.25615800	-1.56380600	-0.53770700
0	-2.21126200	1.00453200	-0.75019200
Cu	-0.36891700	0.61061900	-0.13225200

С	1.68865000	0.45699800	0.02267800
С	1.36934200	1.19331700	-1.17384100
С	2.08136600	1.16104800	1.19788900
С	1.85245000	3.28083100	0.00507100
С	1.47063000	2.61079100	-1.15541200
С	2.15160100	2.55371200	1.17975800
I	1.96381700	-1.64927900	-0.07645400
Н	1.23676500	0.67680000	-2.11870500
Н	1.24930000	3.15871600	-2.06283500
Н	1.92647700	4.36085400	0.00654300
Н	2.44592500	3.07916700	2.07997400
Н	2.32827800	0.60927700	2.09652700
Se	-3.19453100	-0.06539100	0.15713900
Н	-1.44573200	-1.08344900	1.81393100

Н	1.56095800	1.22696400	3.62237800
Н	2.23115400	-0.76735200	2.30044100
Н	-2.61372100	-2.65432200	-1.17651200
Н	-4.87570700	-2.01378000	-1.99456400
Н	-6.29496700	-0.47177800	-0.65221300
Н	-5.45074300	0.42826500	1.51058900
Н	-3.18673200	-0.20397000	2.32205600
Se	-1.32896000	1.71769800	-1.05203200
Н	0.40424100	-2.86369100	1.91200700
I	2.94290700	-1.35078000	-0.71639200
Н	0.01568100	-0.12740500	-2.19471100

0	-1.29432000	-2.16094500	0.16566300
0	0.87162000	-1.19695500	-0.59637400
0	0.31973800	-3.75577200	-1.48630500
Cu	-0.85426200	-0.32116600	-0.19535000
С	-2.65844800	0.22431600	0.30187300
С	-3.66244400	-0.58760600	-0.23177400
С	-2.92709400	1.24762200	1.21705800
С	-5.28859400	0.65349200	1.09589000
С	-4.99126000	-0.36074800	0.17339800
С	-4.26118300	1.44865100	1.62284400
С	-0.14639200	-0.30452700	2.64050500
С	0.96043700	0.06071100	2.26488100
С	2.25108900	0.44770200	1.79595900
С	2.53736700	1.79708100	1.48133000
С	3.26406300	-0.52657800	1.62092400
С	3.80228500	2.15839800	0.99539100
С	4.52735000	-0.15901300	1.14119100
С	4.80222800	1.18473500	0.82209500
Н	-3.42051000	-1.40550900	-0.90075200
Н	-5.78051000	-0.98938600	-0.22526200
Н	-6.31509500	0.82304800	1.40214600
Н	-4.48470500	2.23549400	2.33593100
H	-2.13845300	1.88220900	1.60681800
H	1.76520800	2.54415000	1.61550500
H 	4.01216100	3.19809400	0.77262100
H	5.78841200	1.47188000	0.47475900

1.03229300
1.86724000
-0.09514600
2.95053400
-1.11735100
-1.63817800

0	-1 02068500	2 48628800	0 62874100
0	2 22254000	1 00774100	0.02074100
0	-3.23354000	1.09774100	0.31257000
0	-2.0306/000	2.25821000	-1.95334300
Cu	0.57540200	1.41549100	0.58295400
С	-0.36328800	-1.75243200	-0.93124400
С	-0.66607500	-0.50115100	-1.48450300
С	0.93995600	-2.27451600	-0.97065700
С	1.66140000	-0.28046800	-2.17116300
С	0.35876100	0.23574500	-2.10795400
С	1.94904400	-1.52795300	-1.59579400
С	1.16494400	0.01641500	1.91012400
С	2.22823300	0.29423700	1.23754000
С	3.57745100	0.26338700	0.73782800
С	4.48427900	-0.71793300	1.20932800
С	4.02460900	1.17635100	-0.24482800
С	5.78641000	-0.78458000	0.70177200
С	5.32746500	1.10540500	-0.74986800
С	6.21530500	0.12244000	-0.28186800
Н	-1.66717000	-0.08652400	-1.46247400
Н	0.09500700	1.19231700	-2.54584000
Н	2.44988600	0.28178000	-2.65783700
Н	2.96165300	-1.91612300	-1.61920100
Н	1.17045700	-3.23197000	-0.51939500
Н	4.14925600	-1.41939600	1.96504300
Н	6.46847500	-1.54236600	1.07209500
Н	7.22455400	0.06674300	-0.67400500
Н	5.65222000	1.81487500	-1.50341200
Н	3.33400700	1.93359300	-0.60839000
Se	-2.38032400	2.70506900	-0.39477900
I	-1.90842900	-2.88009700	-0.01779000

H	-3.92378400	0.76066800	-0.29830400
K	-1.70396300	0.14644000	2.25554800
7			
-			
I	0		
1			
Y I			
	5		
. 1			
0	2.36483500	-0.08576300	-0.36973400
0	1.09374700	-2.23960900	-0.15441800
0	3.43513600	-1.89332600	1.45890200
Cu	0.40336300	-0.32658700	-0.13915200
С	-0.44612500	2.59796400	-0.02403000
С	0.92153300	2.95177300	-0.07257300
С	-1.42975400	3.61528800	0.04241900
С	0.31522000	5.30554100	0.01342600
С	1.29269600	4.29985000	-0.05372500
С	-1.04541400	4.95863100	0.06032100
С	-0.86044500	1.22404700	-0.03384600
С	-1.54916700	0.16049400	-0.04340500
С	-2.63500800	-0.77748300	-0.00928000
С	-3.90631800	-0.36177200	0.45585700
С	-2.46032500	-2.11299200	-0.43928000
С	-4.97216400	-1.26584000	0.48348500
С	-3.53305300	-3.00871600	-0.40943400
С	-4.79124000	-2.59018000	0.05216300
H	1.67336200	2.16817400	-0.12401800
Н	2.34229000	4.56564600	-0.08923500
H	0.60899800	6.34858200	0.02877500
Н	-1.80168700	5.73340600	0.11149900
H	-2.47871000	3.34199400	0.07633500
Н	-4.04190800	0.65991000	0.79290900
Н	-5.94185700	-0.94032600	0.84156200
Н	-5.62142500	-3.28635500	0.07542500
H	-3.39145900	-4.02882800	-0.74673400
H	-1.48468700	-2.42565800	-0.80193300
Se	3.03015200	-1.64394800	-0.12222600
Н	0.86204600	-3.00133900	0.41592800

1			
à 1			
0	2.83426500	0.20169300	0.07522200
0	1.50127400	-1.58694200	-1.05891600
0	2.66438900	-2.33747000	1.22586500
Cu	0.99909200	0.26736300	-0.53502600
С	0.72085200	2.14059400	-0.11604300
С	1.49762100	2.58984900	0.95511300
С	-0.04947600	2.99608600	-0.90821800
С	0.78310600	4.86049000	0.42255000
С	1.52566600	3.97264900	1.21564900
С	0.00490100	4.37660600	-0.63917700
С	-0.86822300	0.11215000	-0.47893500
С	-2.08681000	-0.06914700	-0.32198300
С	-3.48882700	-0.29138200	-0.14090300
С	-4.13094200	0.13705900	1.04727300
С	-4.26181300	-0.94103300	-1.13376100
С	-5.50025700	-0.08051100	1.23306100
С	-5.63146500	-1.15312100	-0.94103300
С	-6.25640300	-0.72708400	0.24216700
Н	2.11044200	1.90069900	1.52598800
Н	2.13883400	4.34499300	2.02944800
Н	0.80932800	5.92391000	0.63306300
Н	-0.57195700	5.05973500	-1.25338800
Н	-0.67355300	2.61456200	-1.70642500
Н	-3.54707600	0.64905900	1.80407900
Н	-5.97892300	0.25831600	2.14499000
Н	-7.31788700	-0.89134700	0.38731700
Н	-6.21183600	-1.64664700	-1.71235200
Н	-3.77831700	-1.26186400	-2.04968700
Se	3.07744000	-1.54668500	-0.20770200
К	-0.00698400	-2.62500600	0.85382500

1
	9-00		
1			
0	-2.31952300	0.31685500	-0.34291800
0	-0.84796800	2.33932000	-0.15042800
0	-3.23259300	2.24781300	1.44305800
Cu	-0.33569900	0.37646700	-0.11564300
С	0.15235700	-2.62049200	-0.01105500
С	-1.24805400	-2.78268800	-0.11807900
С	0.98207100	-3.76350700	0.09759500
С	-0.97766800	-5.19692300	-0.01693900
С	-1.80263700	-4.06603400	-0.12182500
С	0.41396000	-5.04083300	0.09396200
С	0.74549100	-1.31285300	-0.01235600
С	1.55015400	-0.33490100	-0.02321500
С	2.73072200	0.48058700	-0.00496000
С	3.95844500	-0.06673700	0.44051800
С	2.69076100	1.82748000	-0.43236400
С	5.11316100	0.72177700	0.45277400
С	3.85116500	2.60686600	-0.41811000
С	5.06532400	2.05860300	0.02550000
Н	-1.88303700	-1.90355400	-0.19357100
Н	-2.87651500	-4.18309700	-0.20413500
Н	-1.41260800	-6.18981200	-0.01983200
Н	1.05281200	-5.91266600	0.17526700
Н	2.05636300	-3.63884700	0.17968100
Н	3.99209500	-1.09816600	0.77302500
Н	6.04904100	0.29671800	0.79628700
Н	5.96327400	2.66478800	0.03770400
Н	3.81180100	3.63689300	-0.75236200
Н	1.74779200	2.24026100	-0.78141800
Se	-2.83445900	1.93484800	-0.12830600
Н	-0.54494300	3.09111800	0.39901300

-3.16236500	1 01100600	
-3.16236500	1 01100000	
	-1.01192600	-0.25019300
-0.85656500	-1.22284000	0.85264300
-1.21465200	-2.68786900	-1.37851200
-2.05460600	0.40605100	0.57407700
-0.16077700	2.35687000	-0.01863200
-1.03966000	2.09726000	1.09670400
-0.66548200	3.00588500	-1.16012200
-2.89493800	3.10216000	-0.18773000
-2.42281100	2.46057900	0.98738800
-2.02124600	3.38052900	-1.24034600
1.17764200	1.88374000	0.03253500
2.29784200	1.37632700	0.08561600
3.54/10/00	0.69/92800	0.1/550/00
4.61183900	0.98302300	-0.71492300
5.72714200	-0.30939000	1.15990300
J.01/90200	-1 00477500	-0.01937200
4.93701100	-1.00477300	1.24402000
-0 60713900	1 80494000	2 04768400
-3.06/39500	2 /0611100	1 86040200
-3 94031400	3 37619700	-0 25787200
-2 38781500	3 87395500	-2 13164000
0.00318600	3.20676500	-1.98959400
4.48274000	1.75753500	-1.46216200
6.62784900	0.51252000	-1.30143500
6.92399000	-1.25243700	0.42814200
5.06505300	-1.76744800	2.00374300
2.91835100	-0.52181800	1.85172100
-2.03901400	-2.32692900	0.06218000
0.91392600	-1.27696700	-1.09440300
	-3.16236500 -0.85656500 -1.21465200 -2.05460600 -0.16077700 -1.03966000 -0.66548200 -2.89493800 -2.42281100 -2.02124600 1.17764200 2.29784200 3.54710700 4.61183900 3.72714200 5.81796200 4.93761100 5.98653800 -0.60713900 -3.06439500 -3.94031400 -2.38781500 0.00318600 4.48274000 6.62784900 6.92399000 5.06505300 2.91835100 -2.03901400 0.91392600	-3.16236500 -1.01192600 -0.85656500 -1.22284000 -1.21465200 -2.68786900 -2.05460600 0.40605100 -0.16077700 2.35687000 -1.03966000 2.09726000 -0.66548200 3.00588500 -2.89493800 3.10216000 -2.42281100 2.46057900 -2.02124600 3.38052900 1.17764200 1.88374000 2.29784200 1.37632700 3.54710700 0.69792800 4.61183900 0.98302300 3.72714200 -0.30939000 5.81796200 0.28167400 4.93761100 -1.00477500 5.98653800 -0.71393200 -0.60713900 1.80494000 -3.06439500 2.40611100 -3.94031400 3.20676500 4.48274000 1.75753500 0.00318600 3.20676500 4.48274000 -1.25243700 5.06505300 -1.76744800 2.91835100 -0.52181800 -2.03901400 -2.32692900 0.91392600 -1.27696700

S38

С	-0.61405900	-0.00707400	-0.00090000
С	-2.03844200	-0.00382300	-0.00042700
С	-2.76393300	-1.21981600	0.00105800
С	-2.75600100	1.21688000	-0.00130300
С	-4.16216300	-1.21065900	0.00164000
С	-4.15422200	1.21703600	-0.00076600
С	-4.86379100	0.00550600	0.00072400
Н	-2.21985500	-2.15734400	0.00180400
Н	-4.70557300	-2.14869800	0.00282600
Н	-5.94770200	0.00908800	0.00115900
Н	-4.69133900	2.15870800	-0.00148500
Н	-2.20562600	2.15071400	-0.00244900
С	2.03840200	-0.00385600	-0.00073600
С	2.75597200	1.21690400	0.00078200
С	2.76397300	-1.21972900	-0.00158600
С	4.15417200	1.21703100	0.00167300
Н	2.20566100	2.15079600	0.00136200
С	4.16221100	-1.21062600	-0.00070200
Н	2.21993300	-2.15729900	-0.00289100
С	4.86383200	0.00550900	0.00100600
Н	4.69125700	2.15873000	0.00296500
Н	4.70545600	-2.14875900	-0.00130300
Н	5.94773900	0.00914300	0.00181700

14			
0	-2.04313900	-0.45361100	1.43591500
0	-3.99438900	-0.81465600	-0.61985500
0	-1.67317200	0.72773300	-0.75153700
Cu	-0.40207500	-0.52067900	0.22714900
С	1.96223800	0.63004600	-0.07680700
С	1.39694700	1.36870800	-1.12962700
С	2.58151500	1.24878100	1.02039300
С	2.06233800	3.40884700	0.02240900
С	1.44758900	2.76858100	-1.06340200
С	2.62637000	2.65094900	1.05881600
I	1.90881000	-1.51660300	-0.16879400
Н	0.90178100	0.87954600	-1.95909400
Н	0.99071800	3.34603000	-1.85708900
Н	2.09509000	4.49069000	0.06464800
Н	3.09999700	3.14145600	1.90077800
Н	3.01114300	0.66387700	1.82422300
Se	-3.17360500	0.46915900	0.02577700
Н	-2.47929500	-1.12456100	2.00199200

A a			
-	•		
I ·			
0	-0.85769500	1.75715200	0.40151200
0	-0.37495300	1.25472600	-2.20308800
0	1.56266200	2.39815200	-0.72010000
Cu	0.03206800	0.05695500	0.72476100
C	2.12183300	-0.59392600	0.81278100
C	2.78810300	-1 26307000	1.11340000
C	1.92429700	-1.20307000	2 25262200
C	2 6/258500	1 17755/00	2 38955400
C	1 16191900	-0 63723800	3 05996100
C	-0 83009900	-1 48565100	-0 51420900
C	-2 06263700	-1 38126800	-0 38542000
C	-3.44070000	-1.09661400	-0.13828600
С	-4.43658500	-2.08355500	-0.31580700
С	-3.80945900	0.20298100	0.29068500
С	-5.77869000	-1.77529800	-0.07040600
С	-5.15471400	0.49460200	0.53773000
С	-6.14174400	-0.48850300	0.35791300
Н	3.36195200	1.12607400	0.35437200
Н	3.14321500	2.11089200	2.61066700
Н	1.69968000	1.01911200	4.32675100
Н	0.54567600	-1.12363700	3.80588700
Н	0.94232900	-2.26013800	1.62141300
Н	-4.14988300	-3.07552800	-0.64536900
Н	-6.53893100	-2.53462900	-0.21124000
Н	-7.18251900	-0.25446100	0.54993800
Н	-5.43341700	1.48825800	0.86883900
Н	-3.03368100	0.95335100	0.42753400
Se	-0.07546600	2.58655000	-0.91786300
Н -	0.46728300	-1.76001000	-1.02207300
1	2.54796300	-1.56144000	-1.02080000
Н	-1.14183200	0.69081400	-1.94543900

	3-4		
8 9			
A			
0	-1.73405400	-0.35080900	1.79187900
0	-3.87309800	-1.51950400	0.44095200
0	-2.66425700	0.83037100	-0.35401900
Cu	-0.76276800	0.60530000	-0.39551700
С	-0.50444700	2.54973600	-0.30193500
С	0.42355200	3.14936100	0.54470900
С	-1.33868500	3.24860100	-1.17180400
С	-0.28709400	5.29843600	-0.37172400
С	0.51981600	4.55600400	0.50203600
С	-1.20809700	4.65162700	-1.20703000
С	1.51470000	0.23419100	-0.15507600
С	2.73927300	0.05572500	-0.03055700
С	4.15702200	-0.11132400	0.07388300
С	4.72626200	-1.03167800	0.98570700
С	5.02542000	0.64883400	-0.74608300
С	6.11366000	-1.18736200	1.07661300
С	6.41185600	0.48788200	-0.65269700
С	6.96359700	-0.42778100	0.25779100
Н	1.07327700	2.56766000	1.18492300
Н	1.24144300	5.05138600	1.14276700
Н	-0.19967700	6.37853500	-0.39984700
Н	-1.84582400	5.22173800	-1.87354100
Н	-2.08743800	2.74786100	-1.77364300
Н	4.07255100	-1.62735800	1.61811000
Н	6.53137300	-1.89934800	1.77948400
Н	8.03842800	-0.54905800	0.32653700
Н	7.06277400	1.07558300	-1.28994100
Н	4.59733500	1.35283300	-1.44944400
Se	-3.23006900	0.03227200	1.09814800
I	-0.88557900	-2.43281900	-1.26337000
Н	-3.21842700	-1.97624700	-0.16205900
K	0.43382800	-1.70890000	1.79656600

TS4			
A A			
	2		
	0 97634200	1 00746500	_0 02052700
0	0.07034200	1.99740300	-0.83833700
0	-0 61190000	3 10483100	1.26/11000
Cu	0.01190000	0 16589300	-0 43057100
C	-2 04775900	-0 01633000	-0 79886300
C	-2.49693100	1.24028300	-0.32613400
C	-1.42216600	-0.13472800	-2.08212700
С	-1.67739400	2.27341400	-2.37442500
С	-2.27410300	2.37972700	-1.10577000
С	-1.25750600	1.03099900	-2.85982700
С	0.41175500	-1.89898900	-0.07831900
С	1.64976000	-1.82608400	-0.22364800
С	3.05429700	-1.59948900	-0.35687600
С	3.97450500	-2.66230600	-0.20272500
С	3.52839600	-0.29614900	-0.64509100
С	5.34658300	-2.42587800	-0.33392500
С	4.90337100	-0.07554500	-0.77576600
С	5.81451500	-1.13308500	-0.62080400
Н	-2.95379400	1.34034500	0.65019600
Н	-2.52142900	3.34572800	-0.68936900
Н	-1.51046900	3.16428800	-2.96552400
Н	-0.77441600	0.95040100	-3.82563900
Н	-1.17295700	-1.10893800	-2.48715000
Н	3.60565500	-3.65923700	0.01303200
Н	6.04869900	-3.24347800	-0.21561400
Н	6.87880900	-0.95278800	-0.72303700
H	5.26235400	0.92304200	-0.99563200
Н	2.81307500	0.51846100	-0.75563000
Se	0.92580500	2.53958000	0.84541600
H	-0.93526900	-2.33870400	0.01429100
I	-2.95012500	-1.78508600	0.06451300
K	-0.37885700	-0.65095600	2.84461200

3	t		
2			
0	2 05027200	0 00710800	0 24404400
0	1 60235000	-1 07777700	-0.34404400
0	1.60233000	-1.9777700	-0.49687300
Cu	1 10490600	0 03923100	-0 23523700
C	-0 12951300	2 10586300	0.23323700
C	0.00105600	2 61921100	1 29840300
C	-0.17602600	2.84588800	-1.16312100
C	0.12326200	4.81641100	0.24412900
С	0.14083800	4.01660300	1.39793600
С	-0.03423600	4.24015000	-1.02632100
С	-0.98793300	0.07369600	-0.11930300
С	-2.19459000	-0.24041500	-0.05508100
С	-3.51569000	-0.76035200	0.00001000
С	-4.07938300	-1.16235900	1.23770800
С	-4.29295900	-0.88584600	-1.17961600
С	-5.37816400	-1.67417300	1.28906800
С	-5.59141900	-1.39779600	-1.11784700
С	-6.13860700	-1.79502600	0.11373400
Н	0.00458500	1.98395700	2.17286500
Н	0.26269000	4.46726300	2.37564500
Н	0.22866200	5.89057200	0.33562700
Н	-0.04905000	4.86279500	-1.91292900
Н	-0.30839600	2.37974800	-2.12937400
Н	-3.48598600	-1.06984300	2.13977100
H 	-5.79847300	-1.98117800	2.23960200
Н	-7.14535100	-2.19406100	0.15705000
H	-6.17/20000	-1.48984800	-2.02499600
п	-3.863//400	-0.580//000	-2.126//800
se u	J.JZX6U4UU 1 10200500	-1.03049000	-0.10006600
п	1.10320300	-2.11400300	-0.10900000

	X.		
the states			
0	3.00292000	0.69591800	-0.13961400
0	2.21383400	-1.51261200	-1.10180400
0	3.06408600	-1.58348600	1.44679900
Cu	1.27881600	0.23730900	-0.95276600
С	-0.09499600	2.11470500	-0.12275200
С	0.59538700	2.44660700	1.03599900
С	-0.96632900	2.93748500	-0.82335300
С	-0.43380700	4.65257800	0.83097700
С	0.41876800	3.76516000	1.50566200
С	-1.11779300	4.24872000	-0.32696300
С	-1.02662600	-0.08212900	-0.56225600
С	-2.21041700	-0.41598800	-0.34655800
С	-3.58193500	-0.77780400	-0.16360500
С	-4.58888700	0.21683400	-0.22533000
С	-3.97120500	-2.11685100	0.07935700
С	-5.93387000	-0.12172700	-0.04634400
С	-5.31815200	-2.44919000	0.25720000
С	-6.30607200	-1.45372300	0.19633200
Н	1.29214200	1.76653700	1.51306700
Н	0.96383900	4.08632000	2.38609700
Н	-0.56593200	5.65990300	1.20807300
Н	-1.77442900	4.93805500	-0.84644400
Н	-1.49802200	2.59821300	-1.70205300
Н	-4.29920800	1.24523100	-0.41063300
Н	-6.69227100	0.65125400	-0.09696300
Н	-7.34964200	-1.71237000	0.33302900
Н	-5.59892700	-3.48054800	0.43873700
Н	-3.21140800	-2.89226700	0.11206200
Se	3.57566300	-0.98665300	-0.05111800
K	0.58129100	-2.35698400	0.89789500

10: Proton(400 MHz) and Carbon NMR(100 MHz)

S67

S70

S74

S75

S85

S87

S95

S110

S111

