Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

SUPPORTING INFORMATION

Theoretical Exploration on Diverse Electron-Deficient Core and Terminal Groups in A-DA'D-A Type Non-Fullerene Acceptors for Organic Solar Cells

Yueyue Shao[†], Tian Lu[‡], Minjie Li^{*†}, Wencong Lu^{*†‡}

[†]Department of Chemistry, College of Science, Shanghai University, Shanghai 200444,

P.R. China

[‡]Materials Genome Institute, Shanghai University, Shanghai, 200444, China

Tel: +86-21-66133513

Fig. S1 The optimized molecular structures of the investigated molecule.

Fig. S2 The frontier molecular orbitals for polymers.

Fig. S3 The frontier molecular orbitals for NFAs.

Fig. S4 The atom numbers for NFAs

Fig. S5 The charge density difference of $S_0 \rightarrow S_1$ of Y6, Y10 and Y11. (Green and blue represent the increase and decrease of the density of the excited state relative to that of the ground state, respectively.) (Isosurface = 0.0005 a.u.)

Fig. S6 The optimized structures of all D/A interfaces.

Fig. S7 The frontier molecular orbitals for D/A interfaces.

Fig. S8 Exciton binding energy (E_b) of D/A interfaces.

Fig. S9 The optimized structures of (PM6)₂/Y6, (PM6)₂/Y10 and (PM6)₂/Y11.

Methods	Theoretical	Absolute error	Relative error
B3LYP	721.49	9.51	1.30%
CAM-B3LYP	589.97	140.03	19.15%
M06	684.98	46.02	6.29%
PBE0	688.20	41.80	5.72%
BHandHLYP	602.16	128.84	17.62%
ωB97XD	567.16	163.84	22.41%

Table S1 The maximum absorption wavelength of Y6 calculated by different functionals with the 6-31G(d,p) basis set compared with experimental value.

 Table S2
 The bond length and dihedral angle for NFAs, polymers and interfaces.

بن من	ل ل ل ل ل ل ل ل ل ل ل ل ل ل	3 3 3 3 3 4 5 5 5 7 3 4 5 5 5 7 3 4 5 5 5 7 5 5 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5	م می در مرکز بر می دور می می می می می می می می می می می می	удэ алараа алараа алараа алараа алараа алараа 1099 алараа 1099 алараа 1099 алараа 2000 алараа 2000 2000 алараа 2000 2000 2000 2000 2000 2000 2000
Length/Å	C ₂ -C ₃	C3-C4	C7-C8	C8-C9
¥6	1.38	1.41	1.41	1.38
Y10	1.38	1.41	1.41	1.38
Y11	1.38	1.41	1.41	1.38
Dihedral angle/°	C1-C2- C3-C4	C ₂ -C ₃ -C ₄ -C ₅	C6-C7-C8- C9	C7-C8-C9-C10
Y6	0.26	0.10	0.09	0.26
Y10	0.37	0.41	0.41	0.37
Y11	0.19	-0.10	0.13	0.22
تونو وهي د 3 موجو 3 موجو 3 موجو 4 موجو 3 موجو 4 مو 4 موجو 4 مو 4 مو 4 مو 4 موجو 4 م 4 مو 4 مو 4 مو 4 مو 4 مو 4 مو 4 مو	9 12 14 5 46 10 11 13 14 5 46 10 11 13 14 5 46 19 88	د هې هن ۱۹ ۱۹ د مې هو د د د د د د د د د د د د م ه م م م م م م	12 44 55.10.11 14 8 3 3 3 4 5.10 14 14 3 3 8 3 11	
		23 12 12 13 14 19 24 24 24 25 10 24 25 24 25 24 25 24 25 24 25 24 25 26 27 29 30 (PM6)_2	31 34 37 38 4132 35 39 40	ę
Length/Å	C ₂ -C ₃	C ₆ -C ₇	C ₁₀ -C ₁₁	C ₁₃ -C ₁₄
PM6	1.47	1.45	1.45	1.45

J11	1.47	1.45		1.45	1.46
Dihedral angle/°	C ₁ -C ₂ -C ₃ - S ₄	C5-C6- C7-S8	S9-C10-C11- S12	S ₁₂ -C ₁₃ - C ₁₄ -C ₁₅	C16-C17-C18-S19
	5(20	55.00	10.20	17.00	20.07
PNIO	56.39	-55.99	18.28	-1/.09	20.97
JII	57.26	-56.81	19.43	-0.83	0.87
(PM6) ₂	56.38	-55.89	18.91	15.53	-17.95
Dihedral	C ₂₃ -C ₂₄ -	C ₂₇ - C ₂₈ -	S31-C32-C33-	S34-C35-	C38-C39-C40-S41
angle/	C25-S26	C ₂₉ -S ₃₀	334	C36-C37	
(PM6) ₂	55.71	-56.49	18.58	15.85	-20.89
	θ_1 PM θ_1 θ	6/Y10		θ_1 (P) θ_1 (P) θ_1 θ_1 θ_1 θ_1 θ_1 θ_1 (P) θ_1 (P) θ_1 (P) θ_1	M6) ₂ /Y10 M6) ₂ /Y11
Dihedral angle/°	θ ₁ PM6/Y6	θ ₁ PM6/Y 10	θ ₁ PM6/Y11	θ ₁ (PM6) ₂ /Y6	 θ₁ θ₁ (PM6)₂ (PM6)₂ /Y10 /Y11
Interfaces	56.51	54.74	58.50	56.50	55.15 56.33

Table S3 The HOMO and LUMO energy levels and HOMO-LUMO gap of BTD, B	ΤZ,
TC and FIC.	

<i>E</i> /eV	НОМО	LUMO	HOMO-LUMO gap
BTD	-6.62	-2.36	4.26
BTZ	-6.15	-1.25	4.90
ТС	-7.03	-3.26	3.77
FIC	-7.24	-3.41	3.83

Interfaces	PM6/Y6	J11/Y6	PM6/Y10	J11/Y10	PM6/Y11	J11/Y11
V _{oc} /V	0.75	0.71	0.83	0.79	0.81	0.77
V _{oc} /exp	0.83	-	-	0.89	0.85	-

Table S4 The V_{oc} of investigated polymers/NFAs OSCs devices.

PM6/Y6	M6/Y6 Main transition configuration			f
S ₁	H→L(97.04%);H→L+1(2.32%)	1.52	817.66	0.0007
S_2	H-1→L(97.93%)	1.70	727.40	1.9341
S ₃	$H-2\rightarrow L(9.18\%); H\rightarrow L+1(87.81\%)$	1.79	694.71	0.0016
S_4	H-2→L(87.93%);H→L+1(9.14%)	1.95	637.05	0.0005
S_5	$H-1 \rightarrow L+1(96.01\%)$	2.03	610.43	0.1558
J11/Y6				
S_1	$H \rightarrow L(89.73\%); H \rightarrow L+1(9.69\%)$	1.41	881.11	0.0074
S_2	H-1→L(97.30%)	1.71	725.11	1.9973
	H-			
S_3	$2\rightarrow L(6.65\%);H\rightarrow L(8.64\%);H\rightarrow L+1(8)$	1.72	720.06	0.0320
	1.63%)			
S.	H-2→L(81.82%);H-	1.80	655 18	0.0008
54	$2 \rightarrow L+1(10.11\%); H \rightarrow L+1(6.06\%)0.0$	1.09	033.18	0.0008
S 5	$H-1 \rightarrow L+1(94.76\%)$	2.03	609.80	0.1820
PM6/Y10				
\mathbf{S}_1	H→L(97.63%)	1.55	799.43	0.0005
S_2	H-1→L(98.41%)	1.70	727.38	2.1234
S_3	$H-2\rightarrow L(25.48\%); H\rightarrow L+1(72.79\%)$	1.84	673.73	0.0034
S 4	$H-2 \rightarrow L(73.03\%); H \rightarrow L+1(25.12\%)$	1.95	635.18	0.0001
S_5	$H-1 \rightarrow L+1(96.71\%)$	2.09	592.48	0.2391
J11/Y10				
S_1	H→L(99.13%)	1.47	843.91	0.0036
S_2	H-1→L(98.49%)	1.71	725.54	2.1259
S_3	$H-2 \rightarrow L(13.30\%); H \rightarrow L+1(86.12\%)$	1.76	705.44	0.0007
S 4	$H-2 \rightarrow L(85.12\%); H \rightarrow L+1(13.38\%)$	1.93	643.88	0.0029
S ₅	$H-1 \rightarrow L+1(97.33\%)$	2.09	592.48	0.2776
PM6/Y11				
S_1	$H \rightarrow L(92.14\%); H \rightarrow L+1(2.98\%)$	1.58	784.38	0.0455
S_2	H-1→L(95.95%)	1.67	743.28	1.8785
S ₃	H-2→L(20.33%); H→L+1(69.38%)	1.84	672.54	0.0324
S_4	$H-1 \rightarrow L+1(83.88\%); H \rightarrow L+1(9.53\%)$	1.99	623.14	0.1207
S 5	H-2→L(74.95%);H-1→L+1(7.85%); H→L+1(16.06%)	2.02	614.08	0.0093

Table S5 The optical absorption properties of all investigated D/A interfaces.

J11/Y11				
S_1	H→L(95.48%)	1.47	845.17	0.0004
S_2	$H \rightarrow 1-L(97.70\%)$	1.68	739.79	1.8290
S_3	$H-2\rightarrow L(12.58\%); H\rightarrow L+1(83.21\%)$	1.72	719.14	0.0049
S_4	H-2→L(85.10%);H→L+1(12.51%)	1.97	629.73	0.0028
S_5	H-1→L+1(95.33%)	2.00	618.88	0.1329

Table S6 Key parameters related to reorganization energy of all investigated D/A interfaces.

Interfaces	$\lambda_{\rm in}({\rm D})/{\rm eV}$	$\lambda_{in}(A)/eV$	$\lambda_{\rm in}/{\rm eV}$	λ_{tol}/eV
PM6/Y6	0.136	0.077	0.213	1.313
J11/Y6	0.137	0.077	0.214	1.314
PM6/Y10	0.136	0.072	0.208	1.308
J11/Y10	0.137	0.072	0.209	1.309
PM6/Y11	0.136	0.076	0.212	1.312
J11/Y11	0.137	0.076	0.213	1.313

Table S7 Key parameters related to charge integral (V_{DA}) of all investigated D/A interfaces.

Interfaces	<i>∆E</i> /eV	μ_{tr} /a.u.	$\Delta \mu_{tr}$ /a.u.	$V_{\rm DA}/{\rm eV}$
PM6/Y6	0.055	0.134	-7.459	0.027
J11/Y6	0.052	0.462	8.537	0.076
PM6/Y10	0.057	0.114	6.215	0.028
J11/Y10	0.054	0.315	5.509	0.083
PM6/Y11	0.058	1.080	3.019	0.461
J11/Y11	0.053	0.108	7.710	0.021

Table S8 Key parameters related to Gibbs free energy (ΔG) of all investigated D/A interfaces.

Interfaces	<i>E</i> _{IP} (D)/eV	E _{EA} (A)/eV	$\Delta G_{\rm CR}/{\rm eV}$	E _{S1} /eV	<i>E</i> _b /eV	$\Delta G_{\rm CS}/{\rm eV}$
PM6/Y6	5.987	2.775	-3.212	2.306	1.800	-0.894
J11/Y6	5.972	2.775	-3.197	2.395	1.980	-1.178
PM6/Y10	5.987	2.690	-3.297	2.306	1.570	-0.574
J11/Y10	5.972	2.690	-3.282	2.395	1.497	-0.610
PM6/Y11	5.987	2.707	-3.280	2.306	1.771	-0.797
J11/Y11	5.972	2.707	-3.265	2.395	1.821	-0.951

Table S9 Dynamic parameters of (PM6)₂/Y6, (PM6)₂/Y10 and (PM6)₂/Y11 interfaces, including λ_{tol} , ΔG_{CR} , ΔG_{CS} , V_{DA} , K_{CR} and K_{CS} .

Interfaces	λ _{tol} /eV	$\Delta G_{\rm CR}$ /eV	$\Delta G_{\rm CS}$ /eV	V _{DA} /eV	$K_{\rm CR}/{\rm s}^{-1}$	$K_{\rm CS}/{\rm s}^{-1}$	$K_{\rm CS}/K_{\rm CR}$
(PM6) ₂ /Y6	1.267	-2.840	-0.731	0.008	6.675×10 ³	1.180×10^{11}	1.768×10^{7}
(PM6) ₂ /Y10	1.263	-2.918	-0.478	0.024	8.722×10^{3}	8.097 ×10 ¹⁰	9.284×10 ⁶
(PM6) ₂ /Y11	1.267	-2.910	-0.616	0.316	1.682×10^{6}	5.884×10 ¹³	3.496×10 ⁷

Molecular polarity index (MPI) of the molecules were calculated based on the distribution characteristics of the surface ESP (electron density isosurfaces of 0.001 a.u.). The value of MPI can be given through the following formula:¹

$$MPI = (1/A) \iint_{S} |V(r)| dS$$
(S1)

Where V is the molecular ESP and A is the molecular surface area. The greater the MPI, the greater the molecular overall polarity.

The charge transfer amount from fragment D to fragment A (Q_{CT}) of a molecule during electron excitation was calculated by the interfragment charge transfer (IFCT) method. The Q_{CT} is defined as follows:²⁻³

$$Q_{\rm D,A} = \Theta_{\rm D,hole} \Theta_{\rm A,ele} \tag{S2}$$

Where $\Theta_{D,hole}$ and $\Theta_{A,ele}$ denote contribution of fragment D to the hole and contribution of fragment A to the electron, respectively.

The IP, EA and η can be calculated by the following formula:⁴

$$IP = E^+(M_0) - E^0(M_0)$$
(S3)

$$EA = E^{0}(M_{0}) - E^{-}(M_{0})$$
(S4)

$$\eta = \frac{IP - EA}{2} \tag{S5}$$

The electron reorganization energy (λ_e) can be calculated by the following formula:⁵⁻⁷

$$\lambda_e = E^-(M_0) - E^-(M_-) + E^0(M_-) - E^0(M_0)$$
(S6)

In the above formula, $E^0(M_0)$ is the energy of the neutral molecule in the neutral geometry, $E^-(M_-)$ is the energy of the anion in the ion geometry Energy, $E^-(M_0)$ represents the energy of the anion in the neutral geometry, $E^0(M_-)$ is the energy of the neutral molecule in the anion geometry.

The excited-state lifetime τ can be calculated by the following formula:⁸

$$\tau = \frac{1.499}{fE^2} \tag{S7}$$

Where *E* and *f* are the excited-state energy (cm^{-1}) and the oscillator strength, respectively;

The Generalized Mullikan-Hush (GHM) model is widely used to calculate the charge transfer integral V_{DA} :⁹

$$V_{\rm DA} = \frac{\mu_{\rm tr} \Delta E}{\sqrt{(\Delta \mu)^2 + 4(\mu_{\rm tr})^2}}$$
(S8)

Where ΔE is the energy difference between the initial state and the final state; $\Delta \mu$ is the dipole moment difference; μ_{tr} is the transition dipole moment. Among them, $\Delta \mu$ is measured using the Hellmann-Feynman theorem under the finite field method. When the existence of static external electric field F, the transition energy related to the electric field F can be expressed by the following formula:¹⁰⁻¹¹

$$E_{\text{ext}}(F) = E_{\text{ext}}(0) - \Delta\mu F - \frac{1}{2}\Delta\alpha F^2$$
(S9)

Where $E_{\text{ext}}(0) = \Delta E$ in the formula is the excitation energy of the lowest intermolecular charge-transfer excited state under a zero-field; $\Delta \alpha$ is the change in polarizability.

The reorganization energy λ is composed of the internal reorganization energy (λ_{in}) and the external reorganization energy (λ_s) of the molecule. The λ_{in} refers to the energy change of the system caused by the relaxation of the geometric structure when the electron is the gain/lost or the electronic state changes; The λ_s refers to the generation of the electronic and nuclear polarization/relaxation of the surrounding medium. The λ_{in} can be obtained using the following formula:¹²

$$\lambda_{\rm in} = \lambda_{\rm in}(A) + \lambda_{\rm in}(D) \tag{S10}$$

$$\lambda_{\rm in}(A) = E(A^-) - E(A) \tag{S11}$$

$$\lambda_{\rm in}(D) = E(D) - E(D^+) \tag{S12}$$

Where E(A) and $E(A^-)$ represent the energies of the optimal ground state of the NFAs and the NFAs of electrically neutral on anion structure, respectively; E(D) and $E(D^+)$ represent the energies of optimized donor polymer cation and donor polymer cation on electrically neutral structure, respectively. So far, using quantum chemistry theory to accurately estimate the λ_s of the D/A interface is still relatively complicated. Therefore, in our work, according to the study of Kuss-Petermann and Wenger, the external reorganization energy is regarded as a constant (λ_s =1.1 eV).¹³

The ΔG_{CR} of the charge recombination process can be estimated by the following formula:¹⁴

$$\Delta G_{\rm CR} = E_{\rm IP}(\rm D) - E_{\rm EA}(\rm A) \tag{S13}$$

In the formula, $E_{IP}(D)$ represents the IP of the donor; $E_{EA}(A)$ represents the EA of the acceptor. The ΔG_{CS} of the charge separation process can be estimated by using the Rehm-Weller formula:¹⁵

$$\Delta G_{\rm CS} = -\Delta G_{\rm CR} - E_{\rm S1} - E_{\rm b} \tag{S14}$$

Here, E_{S1} is the first excited state energy of the free based polymer; E_b is the lowest ICT exciton binding energy at the D/A interface.

The $E_{\rm b}$ is calculated by the following formula:¹⁶⁻¹⁷

$$E_{\rm b} = \frac{e^2}{4\pi\varepsilon_0\varepsilon_{\rm r}} \iint \frac{\rho_{\rm h}(\vec{r_1})\rho_{\rm e}(\vec{r_2})}{|\vec{r_1} - \vec{r_2}|} d^3 \vec{r_1} d^3 \vec{r_2}$$
(S15)

Where *e* is the elementary charge, ε_0 is the vacuum permittivity, ρ_h and ρ_e are the hole density and electron density of the natural transition orbital, respectively, $\vec{r_1}$ and $\vec{r_2}$ are the coordinates of ρ_h and ρ_e .

References

- Y. Cui, P. Zhu, X. Shi, X. Liao and Y. Chen, J. Phys. Chem. C, 2021, 125, 10250-10259.
- 2 Z. Liu, T. Lu and Q. Chen, *Carbon*, 2020, **165**, 461-467.
- 3 T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580-592.
- 4 N. Janprapa and V. Vchirawongkwin, *Chem. Rev.*, 2018, **510**, 60-69.
- 5 Y. Z. Lu, M. R. Ai, K. F. Ji, L. L. Yan and C. C. Sun, *J. Phys. Chem. A*, 2008, **112**, 12172-12178.
- 6 M. E. Koese, W. J. Mitchell, N. Kopidakis, C. H. Chang, S. E. Shaheen, K. Kim and G. Rumbles, *J. Am. Chem. Soc.*, 2007, **129**, 14257-14270.
- N. Janprapa, V. Vchirawongkwin and C. Kritayakornupong, *Chem. Phys.*, 2018, 510, 60-69.
- 8 P. H. Ren, C. F. Sun, Y. Shi, P. Song, Y. H. Yang and Y. Z. Li, J. Mater. Chem. C, 2019, 7, 1934-1947.
- 9 P. Song, Y. Li, F. Ma, T. Pullerits and M. Sun, Chem. Rec., 2016, 16, 734-53.
- P. Song, Y. Z. Li, F. C. Ma, T. Pullerits and M. T. Sun, J. Phys. Chem. C, 2013, 117, 15879-15889.
- Q. G. Wang, Z. Y. Zeng, X. R. Chen, Q. Liu and M. Xu, J. Photoch. Photobio. A, 2019, 383, 111985.
- G. R. Hutchison, M. A. Ratner and T. J. Marks, J. Am. Chem. Soc., 2005, 127, 2339-2350.
- 13 M. Kuss-Petermann and O. S. Wenger, J. Am. Chem. Soc., 2016, 138, 1349-58.
- 14 G. J. Kavarnos and N. J. Turro, Chem. Rev., 1986, 86, 401-449.
- 15 X. Zhang, U. Chi, S. Ji, Y. Wu, S. Peng, K. Han, H. Guo, T. D. James and J. Zhao, J. Am. Chem. Soc., 2009, 131, 17452.
- S. Kraner, G. Prampolini and G. Cuniberti, J. Phys. Chem. C, 2017, 121, 17088-17095.
- S. Kraner, R. Scholz, F. Plasser, C. Koerner and K. Leo, *J. Chem. Phys.*, 2015, 143, 244905.