Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

MXene-Supported Copper-Molybdenum Sulfide

Nanostructures as Catalysts for Hydrogen Evolution

Jiajin Wu^{1,3}, Jiamin Zhou¹, Feng Zhu¹, Hongyong Wang^{*,2}, Gang Xu^{*,1,3}

¹School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P.R. China

²Institute of Applied Radiation of Shanghai, Shanghai University, Shanghai 200444, P.R. China ³Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai 200444, P.R. China

Fig S1. TEM of (a) $Cu_2MoS_4/Ti_3C_2T_x$ -10%, (b) $Cu_2MoS_4/Ti_3C_2T_x$ -50%, (c) $Cu_2MoS_4/Ti_3C_2T_x$ -30% and (d) MXene ($Ti_3C_2T_x$)

The results showed that the morphology of MXene in Fig S1 (a) and Fig S1 (b) gradually matched with that of pure MXene (Fig S1 (d)) in TEM as the concentration of MXene increased. In Fig S1 (c), the TEM plot of $Cu_2MoS_4/Ti_3C_2T_x$ -30% in the dense state does not differ from the SEM plot. It can also be demonstrated that the material has been synthesised. The stacking up of multiple layers has resulted in a severe loss of transparency of the MXene complex with copper molybdenum sulphide, resulting in a pitch black colour, but it is still possible to see the copper molybdenum sulphide to state the state at 20h.

Fig S2. XPS spectra of (a) Mo 3d, (b) Ti 2p, (c) Cu 2p and (d) S 2p before and after the stability test

There are no significant changes observed in the Chemical state. As can be seen from Fig S2, the valence states of Cu, Mo, S and Ti do not show a relatively significant shift in peak position after stability test. These results indicate that the $Cu_2MoS_4/Ti_3C_2T_x$ -30% is stable.

Fig.S3 HRTEM image of Cu₂MoS₄/Ti₃C₂Tx-30%

Fig.S3 shows the HR-TEM images of Cu_2MoS_4 and $Cu_2MoS_4/Ti_3C_2Tx-30\%$ samples. HRTEM images of Cu_2MoS_4 in Fig.R1b indicate the lattice spacing of MXene was about 0.28nm correspond to $(040)^5$ and Cu_2MoS_4 was about 0.50nm correspond to $(002)^6$. In this case MXene can be seen as a distinct dendritic structure, while the dendrites of Cu_2MoS_4 are irregular and inhomogeneous in shape. It can therefore be concluded that the Cu_2MoS_4 grown on MXene, where MXene has some influence on the crystal structure of its edges⁷.

 $\label{eq:Fig.S4} Fig.S4 \quad electrochemical \ data \ (Tafel \ slopes, \ overpotentials, \ ECSAs) \ of \\ Cu_2MoS_4/Ti_3C_2Tx-30\%, \ Cu_2MoS_4, \ Cu_2MoS_4/Ti_3C_2Tx-10\% \ and \ Cu_2MoS_4/Ti_3C_2Tx-50\% \ electrochemical \ data \ (Tafel \ slopes, \ overpotentials, \ ECSAs) \ of \ Cu_2MoS_4/Ti_3C_2Tx-30\%, \ Cu_2MoS_4/Ti_3C_2Tx-10\% \ and \ Cu_2MoS_4/Ti_3C_2Tx-50\% \ electrochemical \ data \ (Tafel \ slopes, \ overpotentials, \ ECSAs) \ of \ Cu_2MoS_4/Ti_3C_2Tx-30\%, \ Cu_2MoS_4/Ti_3C_2Tx-10\% \ and \ Cu_2MoS_4/Ti_3C_2Tx-50\% \ electrochemical \ data \ (Tafel \ slopes, \ overpotentials, \ ECSAs) \ of \ Cu_2MoS_4/Ti_3C_2Tx-30\%, \ Cu_2MoS_4/Ti_3C_2Tx-10\% \ and \ Cu_2MoS_4/Ti_3C_2Tx-50\% \ electrochemical \ data \ (Tafel \ slopes, \ overpotentials, \ ECSAs) \ of \ Cu_2MoS_4/Ti_3C_2Tx-30\%, \ Cu_2MoS_4/Ti_3C_2Tx-10\% \ and \ Cu_2MoS_4/Ti_3C_2Tx-50\% \ electrochemical \ data \ (Tafel \ slopes, \ overpotentials, \ ECSAs) \ of \ Cu_2MoS_4/Ti_3C_2Tx-50\% \ electrochemical \ data \ (Tafel \ slopes, \ slo$

Fig.S4 shows $Cu_2MoS_4/Ti_3C2Tx-30\%$ has the lowest overpotential, the lowest Tafel slope and the highest ESCAs potential at 10 mA cm⁻², indicating that $Cu_2MoS_4/Ti_3C_2Tx-30\%$ has the best catalytic activity, among the four materials. The error bars represent the standard deviations of least three independent measurements of the same sample.

Catalyst	Mediu		Tafel	
	m	η (mv)	slope	Refere
	(electro	(i=-10 mA	(mV	nce
	lyte)	cm-2)	dec ⁻¹)	
Cu ₂ MoS ₄ @Ti ₃	0.5 M	217	96	This
C_2T_x	H_2SO_4	517		work
Cu ₂ MoS ₄ INSs	0.5M	360	77	r11
	H_2SO_4	300		[-]
Cu ₂ MoS ₄ @MW	0.5M	247	48	г2٦
CNT	H_2SO_4	247		ĹĴ
$Cu_2MoS_4@Ce-$	0.5M	360	70	٢3٦
MOF	H_2SO_4	500		ĹĴ
$Cu_2Mo (S_ySe_{1-}$	0.5M	96	52	٢4٦
y)4	H_2SO_4	20		L J

Table S1 Comparison of recent reported Cu_2MoS_4 catalysts for HER in 0.5 M H_2SO_4

References

1. Chen, B. B.; Ma, D. K.; Ke, Q. P.; Chen, W.; Huang, S. M., Indented Cu2MoS4 nanosheets with enhanced electrocatalytic and photocatalytic activities realized through edge engineering. *Phys Chem Chem Phys* **2016**, *18* (9), 6713-21.

2. Zhou, J.; Xu, G.; Zhang, Z.; Wang, H., Facile synthesis of Cu2MoS4 nanosheet/multi-walled carbon nanotube composites as a high-efficiency electrocatalyst for hydrogen evolution. *New Journal of Chemistry* **2019**, *43* (24), 9574-9582.

3. Xue, M.; Wei, Y.; Liu, G., Facile hydrothermal preparation of edge-oriented Cu2MoS4 as an efficient electrocatalyst for hydrogen evolution reaction. *Materials Letters* **2019**, *256*.

4. Tiwari, A. P.; Kim, D.; Kim, Y.; Prakash, O.; Lee, H., Highly active and stable layered ternary transition metal chalcogenide for hydrogen evolution reaction. *Nano Energy* **2016**, *28*, 366-372.

5. Ai J , Lei Y , Shuai Y , et al. SnS nanoparticles anchored on Ti3C2 nanosheets matrix via electrostatic attraction method as novel anode for lithium ion batteries[J]. *Chemical Engineering Journal*, 2018.

6. Geng D , Zhao X , Chen Z , et al. Direct Synthesis of Large - Area 2D Mo2C on In Situ Grown Graphene[J]. *Advanced Materials*, 2017, 29(35):1700072.

 J Ma, Zhu F, Ji P, et al. Enhanced Visible-Light Photocatalytic Performance of Co\\Ni doped Cu₂MoS₄ Nanosheets for Rhodamine B and Erythromycin Degradation[J]. *Journal of Alloys and Compounds*, 2021, 863:158612.