Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Synergism of 1D/2D boride/MXene nanosheets heterojunctions for boosted overall water splitting

Xinyu Ding^{a#}, Xunyue Wang^{a#}, Wenwu Song^a, Xiaoqing Wei^a, Jinli Zhu^{a*}, Yanfeng Tang ^{a,b}, Minmin Wang ^{a,b*}

^a School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
 ^b Nantong Key Laboratory of Intelligent and New Energy Materials
 *Corresponding authors' E-mail: <u>mmwang0528@ntu.edu.cn</u>; jinlizhu@ntu.edu.cn
 # These authors contributed equally to this work.

Figure S1. (a) TEM images of Ni_xB . (b) Ni_xB nanoparticles size distribution. (c) HAADF image, and (d-f) its corresponding elemental mapping images of Ni_xB.

Figure S2. TEM image of $N_{10}TC$ nanosheets.

Figure S3. (a) Zeta potentials of Ni_xB and $N_{10}TC$ dispersed in water. (b) N_2 -sorption isotherm of $Ni_xB/N_{10}TC$, the inset shows the pore size distribution.

Figure S4. (a) PXRD patterns of $Ni_xB/N_{10}TC$, Ni_xB , and $N_{10}TC$. (b) XPS survey spectra of $Ni_xB/N_{10}TC$.

Figure S5. Cyclic voltammograms at different scan rate in the region of $-0.9 \sim -1$ V vs. Ag/AgCl for (a) N₁₀TC, (b) Ni_xB and (c) Ni_xB/N₁₀TC. (d) Mott-Schottky plots for N₁₀TC and Ni_xB/N₁₀TC at 1 kHz frequency in 1 M KOH (pH = 14) at room temperature.

Figure S6. (a) HER polarization curves of $Ni_xB/N_{10}TC$ in different electrolytes; (b) Tafel slopes and corresponding exchange current density (j_0); (c) Overpotentials at 10 mA cm⁻² for $Ni_xB/N_{10}TC$ electrode in different electrolytes. (d-f) HER polarization curves (1 mV s⁻¹) of different electrodes in different electrolytes, (d) 30 wt% KOH; (e) 0.1 M KOH; (f) 0.1 M PBS(pH=7) solution.

Figure S7. XPS spectra of Ni_xB/N₁₀TC heterojunction after 1000 cycles test.

Figure S8. (a) XRD, (b)TEM and (c-h) its corresponding elemental mapping for the sample of $Ni_xB/N_{10}TC$ heterojunction after HER stability test.

Figure S9. (a) Polarization curves with 80% iR-compensation and (b) Tafel plots of $N_{10}TC$, Ni_xB , $Ni_xB/N_{10}TC$, and commercial RuO_2 for OER in 1.0 M KOH electrolyte. (c) C_{dl} values estimated in 1.0 M KOH electrolyte. (d) Electrochemical impedance spectroscopy of $N_{10}TC$, Ni_xB , $Ni_xB/N_{10}TC$.

Figure S10. (a) OER polarization curves of $Ni_xB/N_{10}TC$ in different electrolytes; (b) Tafel slopes and corresponding exchange current density (*j*₀); (c) Overpotentials at 10 mA cm⁻² for $Ni_xB/N_{10}TC$ electrode in different electrolytes. (d-e) OER polarization curves (1 mV s⁻¹) of different electrodes in different electrolytes, (d) 30 wt% KOH; (e) 0.1 M KOH. (f) OER polarization curves of $Ni_xB/N_{10}TC$ heterojunction under various sweep speeds.

Figure S11 The potential mechanism of the catalysis process.

Catalyst	Substrate used	Electrolyte	Loading amount (mg cm ⁻²)	$\eta_{10} \left(mV \right)$		- 1/2	Dof
				HER	OER	A/g	Kel.
Ni _x B/N ₁₀ TC	GC	1 M KOH	0.11	310	468	90.91	This work
Ni ₂ B-gC ₃ N ₄	GC	1 М КОН	_	707	_	_	ACS Sustainable Chem. Eng. 2018 , 6, 16198
Ni _x B-300	GC	1 M KOH	0.21	_	380	47.62	Adv. Energy Mater. 2017 , 7, 1700381
Co ₂ B-CoSe ₂	GC	1 M KOH	0.40	300	320	25	ACS Appl. Mater. Interfaces 2017 , 9, 39312
Etched Mo-Al-B	Unsupport ed	$0.5 \text{ M H}_2\text{SO}_4$	—	361	_	_	Chem. Mater. 2017 , 29, 8953
MoS ₂ /Ti ₃ C ₂	GC	0.5 M H ₂ SO ₄	0.35	280	_	28.57	Int. J. Hydrogen Energy 2019 , 44, 965-976
NiCoS/Ti ₃ C ₂ T _x	GC	1 M KOH	0.21	_	365	47.62	ACS Appl Mater Interfaces 2018 , 10, 22311-22319

Table S1 Comparison of catalytic performance with the most recently reported watersplitting catalysts.