## Supporting Information for:

## A quasilinear hydrazone-based mononuclear dysprosium compound in weak easy-plane anisotropy exhibiting fieldinduced complex magnetic relaxation<sup>†</sup>

Peiqiong Chen,<sup>‡a</sup> Xiao Sun,<sup>‡a</sup> Xuefeng Guo,<sup>b</sup> Dan Liu,<sup>\*b</sup> Hou-Ting Liu,<sup>a</sup> Jing Lu<sup>\*a</sup> and Haiquan Tian<sup>\*a</sup>

<sup>a</sup> Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China. E-mail: <u>tianhaiquan@lcu.edu.cn</u>, <u>lujing@lcu.edu.cn</u>

<sup>b</sup> Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, China. E-mail: <u>iamdliu@nwpu.edu.cn</u>

<sup>‡</sup> These authors contributed equally to this work.

|            |          | Compound   | I        |             |          |
|------------|----------|------------|----------|-------------|----------|
| Dy1–O1     | 2.432(7) | O1-Dy1-N12 | 71.0(2)  | N5-Dy1-N9   | 131.2(2) |
| Dy1–O2     | 2.493(7) | O1-Dy1-N13 | 135.9(3) | N5-Dy1-N10  | 149.0(2) |
| Dy1–N4     | 2.519(7) | O2-Dy1-N4  | 67.7(2)  | N5-Dy1-N11  | 74.3(3)  |
| Dy1-N5     | 2.584(7) | O2-Dy1-N5  | 76.7(2)  | N5-Dy1-N12  | 103.3(2) |
| Dy1-N9     | 2.510(6) | O2-Dy1-N9  | 62.9(2)  | N5-Dy1-N13  | 76.4(3)  |
| Dy1-N10    | 2.605(7) | O2-Dy1-N10 | 125.2(2) | N9-Dy1-N10  | 62.4(2)  |
| Dy1-N11    | 2.408(9) | O2-Dy1-N11 | 142.6(3) | N9-Dy1-N11  | 124.2(3) |
| Dy1-N12    | 2.411(7) | O2-Dy1-N12 | 135.7(2) | N9-Dy1-N12  | 68.4(3)  |
| Dy1-N13    | 2.399(8) | O2-Dy1-N13 | 75.9(3)  | N9-Dy1-N13  | 68.4(3)  |
| O1-Dy1-O2  | 73.2(2)  | N4-Dy1-N5  | 62.2(2)  | N10-Dy1-N11 | 76.0(3)  |
| O1-Dy1-N4  | 63.5(2)  | N4-Dy1-N9  | 119.1(2) | N10-Dy1-N12 | 76.7(2)  |
| O1-Dy1-N5  | 124.6(2) | N4-Dy1-N10 | 142.2(2) | N10-Dy1-N13 | 87.7(3)  |
| O1-Dy1-N9  | 69.8(2)  | N4-Dy1-N11 | 116.6(3) | N11-Dy1-N12 | 74.6(3)  |
| O1-Dy1-N10 | 85.3(2)  | N4-Dy1-N12 | 73.4(2)  | N11-Dy1-N13 | 74.7(3)  |
| O1-Dy1-N11 | 143.8(3) | N4-Dy1-N13 | 129.4(3) | N12-Dy1-N13 | 148.1(3) |

Table S1. Selected bond lengths (Å) and angles (°) for compound I.

Symmetry codes: (a) 1.5-x, 1-y, z.

|                    |            | Compound I        |                     |             |
|--------------------|------------|-------------------|---------------------|-------------|
| D–H····A           | d(D-H) (Å) | $d(H\cdots A)(Å)$ | $d(D \cdots A)$ (Å) | <(DHA) ( °) |
| N3-H3A…O3          | 0.8800     | 1.9000            | 2.739(11)           | 158.00      |
| C2-H2…N8           | 0.9500     | 2.0500            | 2.934(11)           | 154.00      |
| C4-H4 …O3          | 0.9500     | 2.3300            | 3.273(13)           | 172.00      |
| C4-H4…N3           | 0.9500     | 2.3300            | 2.680(11)           | 101.00      |
| C11-<br>H11····N13 | 0.9500     | 2.5800            | 3.117(13)           | 116.00      |
| C15-H15…N8         | 0.9500     | 2.3100            | 2.662(11)           | 101.00      |
| C20-H20…S3         | 0.9500     | 2.7500            | 3.582(11)           | 146.00      |

 Table S2. Hydrogen bonds in compound I.

Symmetry codes: (a) 1.5-x, 1-y, z; (b) 1.5-x, 1-y, z; (c) 1.5-x, 1-y, z; (d) 1.5-x, 0.5+y, 0.5-z.

|                   | С      | ompound I         |        |
|-------------------|--------|-------------------|--------|
| Geometry (CN = 9) | Dy1    | Geometry (CN = 9) | Dy1    |
| EP-9              | 35.886 | CSAPR-9           | 0.822  |
| OPY-9             | 22.710 | JTCTPR-9          | 2.886  |
| HBPY-9            | 19.947 | TCTPR-9           | 1.474  |
| JTC-9             | 15.761 | JTDIC-9           | 12.137 |
| JCCU-9            | 11.316 | НН-9              | 10.599 |
| CCU-9             | 9.379  | MFF-9             | 1.471  |
| JCSAPR-9          | 1.650  |                   |        |

**Table S3.** Dy<sup>III</sup> geometry analysis of I by SHAPE 2.1 software.

| Lable    | Shape                                            | Lable    | Shape                                                 |
|----------|--------------------------------------------------|----------|-------------------------------------------------------|
| EP-9     | Enneagon (D <sub>9h</sub> )                      | CSAPR-9  | Spherical capped square antiprism $(C_{4v})$          |
| OPY-9    | Octagonal pyramid (C <sub>8v</sub> )             | JTCTPR-9 | Tricapped trigonal prism J51 (D <sub>3h</sub> )       |
| HBPY-9   | Heptagonal bipyramid (D <sub>7h</sub> )          | TCTPR-9  | Spherical tricapped trigonal prism (D <sub>3h</sub> ) |
| JTC-9    | Johnson triangular cupola J3 (C <sub>3v</sub> )  | JTDIC-9  | Tridiminished icosahedron J63 (C <sub>3v</sub> )      |
| JCCU-9   | Capped cube J8 (C <sub>4v</sub> )                | НН-9     | Hula-hoop (C <sub>2v</sub> )                          |
| CCU-9    | Spherical-relaxed capped cube (C <sub>4v</sub> ) | MFF-9    | Muffin (C <sub>s</sub> )                              |
| JCSAPR-9 | Capped square antiprism J10 (C <sub>4v</sub> )   |          |                                                       |

|     |            | FR              |              |                   |                 | SR         |                  |
|-----|------------|-----------------|--------------|-------------------|-----------------|------------|------------------|
| T   | Xs, tot    | $\Delta \chi_1$ | $\alpha_{l}$ | $\ln(\tau_1 / s)$ | Δχ <sub>2</sub> | $\alpha_2$ | $\ln(	au_2 / s)$ |
| 1.9 | -8.457(9)  | 33.86(1)        | 0.191(4)     | -1.598(2)         | 0.65(1)         | 0.293(5)   | -7.401(3)        |
| 2.2 | -10.329(7) | 28.97(5)        | 0.176(9)     | -1.609(9)         | 4.32(8)         | 0.263(1)   | -7.482(8)        |
| 2.5 | -12.521(5) | 21.15(9)        | 0.154(3)     | -1.685(4)         | 10.81(5)        | 0.257(1)   | -7.810(1)        |
| 3.0 | -15.320(7) | 15.46(3)        | 0.117(1)     | -1.653(4)         | 14.07(1)        | 0.229(5)   | -8.611(2)        |
| 3.5 | -17.614(8) | 10.51(9)        | 0.101(7)     | -1.642(5)         | 18.90(7)        | 0.216(7)   | -9.840(3)        |
| 4.0 | -19.906(8) | 8.643(1)        | 0.092(9)     |                   | 20.68(5)        | 0.194(3)   | -11.165(7)       |
| 4.5 | -21.464(1) | 6.837(5)        | 0.087(8)     |                   | 22.08(1)        | 0.179(1)   | -13.103(2)       |
| 5.0 | -22.236(2) | 4.959(8)        | 0.075(5)     |                   | 23.75(9)        | 0.170(3)   | -14.802(9)       |

**Table S4.** Relaxation fitting parameters from least-squares fitting of  $\chi(\omega)$  data for compound I.

|        |           |                 | FR             |             |                 | SR         |             |
|--------|-----------|-----------------|----------------|-------------|-----------------|------------|-------------|
| F (Oe) | Xs, tot   | $\Delta \chi_1$ | α <sub>1</sub> | $	au_1 / s$ | $\Delta \chi_2$ | $\alpha_2$ | $	au_2 / s$ |
| 200    | 1.369(7)  | 0.057(1)        | 0.051(9)       | 0.1159(5)   | 0.620(8)        | 0.544(2)   | 8.038(3)E-4 |
| 400    | 0.669(7)  | 0.278(1)        | 0.077(4)       | 0.1195(9)   | 1.219(9)        | 0.455(8)   | 0.0012(1)   |
| 600    | 0.358(3)  | 0.216(5)        | 0.089(7)       | 0.1270(6)   | 1.377(2)        | 0.176(7)   | 0.0014(7)   |
| 800    | 0.194(2)  | 0.368(8)        | 0.093(9)       | 0.1354(9)   | 1.334(8)        | 0.175(7)   | 0.0014(8)   |
| 1000   | 0.077(4)  | 0.416(3)        | 0.103(4)       | 0.1461(2)   | 1.239(8)        | 0.093(6)   | 0.0013(5)   |
| 1200   | -0.032(9) | 0.618(3)        | 0.104(3)       | 0.1657(7)   | 1.094(8)        | 0.181(7)   | 0.0011(1)   |
| 1400   | -0.293(2) | 3.582(9)        | 0.086(3)       | 0.1799(9)   | 0.893(1)        | 0.500(8)   | 8.356(7)E-4 |
| 1600   | -0.177(4) | 2.160(1)        | 0.103(1)       | 0.1928(3)   | 0.802(7)        | 0.421(6)   | 6.296(2)E-4 |
| 1800   | -0.160(2) | 0.743(1)        | 0.163(2)       | 0.2146(6)   | 0.769(8)        | 0.192(4)   | 4.756(3)E-4 |
| 2000   | -0.097(9) | 0.674(4)        | 0.209(9)       | 0.2352(5)   | 0.712(7)        | 0.185(5)   | 3.360(3)E-4 |
| 2200   | -0.009(9) | 0.678(6)        | 0.252(6)       | 0.2460(7)   | 0.660(5)        | 0.138(8)   | 2.262(8)E-4 |
| 2400   | 0.076(8)  | 0.688(5)        | 0.281(3)       | 0.2642(2)   | 0.605(5)        | 0.164(3)   | 1.513(2)E-4 |
| 2600   | 0.147(5)  | 0.717(8)        | 0.330(9)       | 0.2845(9)   | 0.598(6)        | 0.193(6)   | 8.860(1)E-5 |
| 2800   | 0.042(6)  | 0.450(8)        | 0.532(5)       | 0.2936(5)   | 1.256(9)        | 0.051(8)   | 6.600(8)E-6 |
| 3000   | 0.156(6)  | 0.377(7)        | 0.560(6)       | 0.3032(7)   | 1.646(5)        | 0.031(4)   | 1.519(3)E-6 |

Table S5. Relaxation fitting parameters from least-squares fitting of  $\chi(\omega)$  data under the dc applied field for I.



Figure S1. Thermal analysis of compound I.



Figure S2. The powder XRD patterns for compound I.



**Figure S3.** The black circles are for the observed data in **I**. The red solid line is for the calculated data. The grey solid curve is for the difference. The vertical bars are the positions of Bragg peaks. Cell parameters: *Pbca*, a = 13.74 Å, b = 17.50 Å, c = 31.15 Å,  $\alpha = 90.0^{\circ}, \beta = 90.0^{\circ}, \gamma = 90.0^{\circ}, V = 7511.6 Å^3$  (wRp = 0.091).Thermal analysis of

compound I.



Figure S4. Coordination environments of the crystallographically independent Dy<sup>III</sup> ion in I.



Figure S5. Unit cell of I showing the presence of eight crystallographically molecules.



Figure S6. Magnetization data for compound I at temperature range of 2.0 K - 5.0 K.



**Figure S7.** Temperature dependence of the  $\chi'T$ ,  $\chi'$  and  $\chi''$  *ac* susceptibilities under zerodc field for compound I.



**Figure S8.** Field dependence of the  $\chi' ac$  susceptibility of compound I at 1000 Hz and 2 K.



Figure S9. Field dependence of the  $\chi'' ac$  susceptibility of compound I at 1000 Hz and 2 K.



**Figure S10.** Frequency dependence of the  $\chi' ac$  susceptibility of compound I under various applied dc fields at 2.0 K.



**Figure S11.** Frequency dependence of the out-of-phase ( $\chi''$ ) ac susceptibility of compound I. The solid lines represent the best fits.



Figure S12. Temperature dependence of the  $\chi'T ac$  susceptibility under the optimal 0.7 kOe static field for I.



Figure S13. Temperature dependence of the  $\chi'$  product *ac* susceptibility under the optimal 0.7 kOe static field for I.



Figure S14. Temperature dependence of the  $\chi''$  product *ac* susceptibility under the optimal 0.7 kOe static field for I.



Figure S15. Variable-frequency out-of-phase ac susceptibility of  $Dy_{0.10}Y_{0.90}$  under various applied dc fields at 1.9 K.



Figure S16. Variable-frequency out-of-phase ac susceptibility of  $Dy_{0.02}Y_{0.98}$  under various applied dc fields at 1.9 K.

## Ab initio calculations for Dy1 compound

All calculations were carried out with OpenMolcas<sup>S1</sup> and are of CASSCF/RASSI/SINGLE\_ANISO type.<sup>S2-S4</sup> Structure of Dy1 is shown in Figure1. Active space of the CASSCF method included 9 electrons in 7 orbitals for Dy (4f orbitals of Dy<sup>3+</sup> ion). On the basis of the resulting spin-orbital multiplets SINGLE\_ANISO program<sup>S5</sup> computed local magnetic properties (*g*-tensors, magnetic axes, local magnetic susceptibility etc.)



Figure S17. Structures of the Dy1 and main magnetic axis of ground doublet (dashed line).

|    | Basis set    |  |
|----|--------------|--|
|    |              |  |
| Dy | ANO-RCC-VTZP |  |
| Ν  | ANO-RCC-VDZP |  |
| 0  | ANO-RCC-VDZ  |  |
| С  | ANO-RCC-VDZ  |  |
| Н  | ANO-RCC-VDZ  |  |
| S  | ANO-RCC-VDZ  |  |
|    |              |  |

**Table S6.** Contractions of the employed basis set in computational approximations for Dy1.

| Spin-orbit energies (cm <sup>-1</sup> ) |
|-----------------------------------------|
| 0.000                                   |
| 31.291                                  |
| 66.508                                  |
| 104.337                                 |
| 169.678                                 |
| 230.905                                 |
| 257.103                                 |
| 321.977                                 |

 Table S7. Energies of the lowest Kramers doublets of Dy center in Dy1.

Table S8. The g tensors of the lowest Kramers doublets (KD) of Dy center in Dy1.

| ł | ζD                                                 | Dy in I                                                                |
|---|----------------------------------------------------|------------------------------------------------------------------------|
| 1 | $egin{array}{c} g_{x} \ g_{y} \ g_{z} \end{array}$ | 0.648881335<br>2.113499404<br>17.656407339                             |
| 2 | $g_x$<br>$g_y$<br>$g_z$                            | 1.097740772<br>3.135091004<br>13.610809426                             |
| 3 | $egin{array}{c} g_x \ g_y \ g_z \end{array}$       | 2.694784315<br>5.356813725<br>10.348702742                             |
| 4 | g <sub>x</sub><br>g <sub>y</sub><br>g <sub>z</sub> | $\begin{array}{c} 1.498748998\\ 3.457086291\\ 10.972704263\end{array}$ |



Figure S18. Experimental (circles) vs. calculated (red solid line) magnetic susceptibility of Dy1.



**Figure S19.** Experimental (circles) vs. calculated (red solid line) field-dependent magnetization of Dy1 at 2.0 K.



**Figure S20.** Experimental (circles) vs. calculated (red solid line) field-dependent magnetization of Dy1 at 3.0 K.



Figure S21. Experimental (circles) vs. calculated (red solid line) field-dependent magnetization of Dy1 at 5.0 K.

## **References:**

- S1 I. F. Galván, M. Vacher, A. Alavi, C. Angeli, F. Aquilante, J. Autschbach, J. J. Bao, S. I. Bokarev, N. A. Bogdanov, R. K. Carlson, L. F. Chibotaru, J. Creutzberg, N. Dattani, M. G. Delcey, S. S. Dong, A. Dreuw, L. Freitag, L. M. Frutos, L. Gagliardi, F. Gendron, A. Giussani, L. Gonzalez, G. Grell, M. Guo, C. E. Hoyer, M. Johansson, S. Keller, S. Knecht, G. Kovačević, E. Källman, G. Li Manni, M. Lundberg, Y. Ma, S. Mai, J. P. Malhado, P. Å. Malmqvist, P. Marquetand, S. A. Mewes, J. Norell, M. Olivucci, M. Oppel, Q. M. Phung, K. Pierloot, F. Plasser, M. Reiher, A. M. Sand, I. Schapiro, P. Sharma, C. J. Stein, L. K. Sørensen, D. G. Truhlar, M. Ugandi, L. Ungur, A. Valentini, S. Vancoillie, V. Veryazov, O. Weser, T. A. Wesołowski, P.-O. Widmark, S. Wouters, A. Zech, J. P. Zobel and R. Lindh, J. Chem. Theory Comput., 2019, 15, 5925–5964.
- S2 P. E. M. Siegbahn, J. Almlöf, A. Heiberg and B. O. Roos, J. Chem. Phys., 1981, 74, 2384 – 2396.
- S3 J. Olsen, B. O. Roos, P. Jørgensen and H. J. A. Jensen, J. Chem. Phys., 1988, 89, 2185 – 2192.
- S4 P. Å. Malmqvist, B. O. Roos and B. Schimmelpfennig, *Chem. Phys. Lett.*, 2002, **357**, 230–240.
- S5 L. Ungur and L. F. Chibotaru, "SINGLE\_ANISO program," can be found under http://www.molcas.org/documentation/ manual/