Supplementary materials

Materials Characterization

The synthesized samples were analyzed by X-ray diffraction (XRD, PANalytical, Empyrean) with Cu-Kalpha radiation (λ =0.15405 nm), and the phase and crystal structure of the samples were studied. The morphology was measured with a field emission scanning electron microscope (SEM, FEI, Tecnai MLA650F) and the transmission electron microscope (TEM, FEI F20) is used in element distribution analysis. The element and its attribute analysis are determined by X-ray photoelectron spectroscopy (XPS, thermoscientific, ESCALAB 250XI).

Synthesis of (Fe_{0.75}Ni_{0.25})C₂O₄ NRs

10 mmol oxalic acid was dissolved in DMAC as solution A. 1.5 mmol of $FeCl_2 \cdot 4H_2O$ and 0.5 mmol of $NiCl_2 \cdot 6H_2O$ was dissolve in 25 mL deionized water as solution B. Slowly add solution B into solution A and stir for 5 min. The above solution was centrifuged with ethanol for three times. The precipitate was dried in an oven at 60 °C and ground to obtain (Fe $_{0.75}Ni_{0.25})C_2O_4$ NRs.

Synthesis of (Fe 0.25Ni0.75)C2O4 NRs

10 mmol oxalic acid was dissolved in DMAC as solution A. 0.5 mmol of $FeCl_2 \cdot 4H_2O$ and 1.5mmol of $NiCl_2 \cdot 6H_2O$ was dissolve in 25 mL deionized water as solution B. Slowly add solution B into solution A and stir for 5 min. The above solution was centrifuged with ethanol for three times. The

precipitate was dried in an oven at 60 °C and ground to obtain (Fe $_{0.25}Ni_{0.75})C_2O_4$ NRs.

Pretreatment of nickel foam(NF)

Cut the NF into affirmative 2*2 mm square. The NF was placed in a 2 mol/L HCl solution for ultrasonic 30min. Then wash with alcohol and deionization. The treated NF was stored in ethanol for use.

Fig. S1 (a) XRD patterns of 40-(Fe_{0.5}Ni_{0.5})C₂O₄.

Fig. S2 (a) the SEM images of NiC_2O_4 . (b) the SEM images of FeC_2O_4 (c) the SEM images of $(Fe_{0.5}Ni_{0.5})C_2O_4$. (d-f) the TEM images of $(Fe_{0.5}Ni_{0.5})C_2O_4$ low- and high-

Fig. S3 LSV polarization curves of $(Fe_{0.75}Ni_{0.25})C_2O_4$ and $(Fe_{0.25}Ni_{0.75})C_2O_4$ with 95% iR compensation.

Fig. S4 (a) C_{1s} , (b) O_{1s} , (c) Fe_{2p} , (d) Ni_{2p} XPS spectra of the G-($Fe_{0.5}Ni_{0.5}$) C_2O_4 after the OER measurements.

Fig. S5 C_{1s} , (b) O_{1s} , (c) Fe_{2p} , (d) Ni_{2p} XPS spectra of the 40-($Fe_{0.5}Ni_{0.5}$) C_2O_4 .

Fig. S6 (a) Cyclic voltammetry curves of FeC₂O₄ in 1M KOH solution with different scan rates. (b) Cyclic voltammetry curves of NiC₂O₄ in 1M KOH solution with different scan rates. (c) Cyclic voltammetry curves of the 40-(Fe_{0.5}Ni_{0.5}) C₂O₄ in 1M

KOH solution with different scan rates. (d) Cyclic voltammetry curves of G- $(Fe_{0.5}Ni_{0.5}) C_2O_4$ in 1M KOH solution with different scan rates. (e)The relationship between the difference between the anode and cathode current density of all catalysts and the scanning rate.

Fig. S7 (a) LSV polarization curves and (b) Tafel plots for OER of 40-(Fe_{0.5}Ni_{0.5})C₂O₄ and G-(Fe_{0.5}Ni_{0.5})C₂O₄ with 95% iR compensation. (c) Nyquist diagram obtained by electrochemical impedance spectroscopy at 1.6 V vs. RHE 40-(Fe_{0.5}Ni_{0.5}) C₂O₄ and G-(Fe_{0.5}Ni_{0.5}) C₂O₄ electrocatalysts (inset: equivalent resistance circuit model).

Fig. S8 Schematic diagram of mass production of (Fe_{0.5}Ni_{0.5})C₂O₄.

Fig. S9 Comparison of electrochemical activity between (Fe_{0.5}Ni_{0.5})C₂O₄ and different reported FeNi compound catalysts.