High proton conductivityin a charge carrier induced Ni(II)-metal-organic framework

Debabrata Chakraborty,^a Arijit Ghorai,^b Piyali Bhanja,^c Susanta Banerjee,^b Asim Bhaumik*,^a

^aSchool of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B,

Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India

^bMaterials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302,

India

^cMaterials Chemistry Division, CSIR - Institute of Minerals & Materials Technology,

Bhubaneswar, Odisha 751013, India

Corresponding author: msab@iacs.res.in

Supporting Information

Entry	Table of contents		
Experimental	¹ H-NMR, ¹³ C-NMR and ³¹ P NMR spectra (Figure S1-S7) of TPE, TPE-Br, TPE-Ester and TPE-Acid (H ₈ L ligand).	S2-S5	
Figure S8	Solid state UV-Visible spectra of as-synthesized H_8L -Ni-MOF and H_8L -ligand.	S6	
Figure S9	Direct optical band gap measurement of H ₈ L-Ni-MOF material using Tauc equation	S7	
Figure S10	UHR-TEM images of H_8L -Ni-MOF material at different magnifications.	S8	
Figure S11	HADDF images and elemental mapping of H ₈ L-Ni-MOF material containing elements C, P, O, and Ni atom.	S9	
Figure S12	Full scale XPS survey spectrum of H ₈ L-Ni-MOF.	S10	
Figure S13	Thermogravimetric plot of H ₈ L-Ni-MOF.	S11	
Figure S14	Water uptake (weight %) of H_8L -Ni-MOF with time at 30 °C under 98% RH and PXRD pattern of the H_8L -Ni-MOF.	S12	
Table S1.	Proton conductivity of $H^+@H_8L$ -Ni-MOF at 98% RH in different temperatures.	S13	
Figure S15	PXRD data of as-synthesized, $H^+@H_8L$ -Ni-MOF and washed MOF	S14	

Experimental Section

Fig.S1.¹H NMR spectra of TPE.

Fig. S2.¹H NMR spectra of TPE-Br.

Fig. S3.¹H NMR spectra of TPE-PE.

Fig. S7.³¹P NMR spectra of TPE-PA.

Fig. S8.Solid state UV-Visible spectra of as-synthesized H_8L -Ni-MOF (a) and H_8L -ligand (b).

Fig. S9.Direct optical band gap of H_8L -Ni-MOF material using Tauc equation.

Fig. S10.UHR-TEM images with different magnification of H_8L -Ni-MOF.

Fig. S11.HADDF image and elemental mapping of H₈L-Ni-MOF material containing elements (b) C, (c) P, (d) O, and (e) Ni.

Fig. S12. Full scale XPS survey spectrum of H₈L-Ni-MOF.

Fig. S13.TGA plot of H_8L -Ni-MOF material in N_2 atmosphere.

Fig. S14.Water uptake (weight %) of H_8L -Ni-MOF with time at 30 °C under 98% RH (A) and PXRD pattern of the H_8L -Ni-MOF (B) as-synthesized (a), after water uptake (b).

Temperature (°C)	Proton Conductivity (S cm ⁻¹)		
	Without doping	SA-doped sample	
20	9.36 × 10 ⁻⁶	3.45×10^{-3}	
30	1.25×10^{-5}	$4.07 imes 10^{-3}$	
40	1.56 × 10 ⁻⁵	4.73×10^{-3}	
50	1.97×10^{-5}	5.20×10^{-3}	
60	2.60×10^{-5}	6.31 × 10 ⁻³	
70	3.11 × 10 ⁻⁵	7.67×10^{-3}	
80	4.67 × 10 ⁻⁵	$9.77 imes 10^{-3}$	
90	5.45 × 10 ⁻⁵	1.17 × 10 ⁻²	

Table S1. Proton conductivi	y of H ⁺ @H	l ₈ L-Ni-MOF	at 98% RH in	different temperatures.

Fig. S15.PXRD pattern data of as-synthesized MOF (a), $H^+@H_8L$ -Ni-MOF (b), and washed $H^+@H_8L$ -Ni-MOF after proton conductivity measurement (c).