Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary information

Dibenzo[d,d']benzo[2,1-b:3,4-b']difurans with extended π -conjugated chains: the synthetic approach and some properties

Masafumi Hirano,* Harumi Okada, Chikara Hayasaka, Nobuyuki Komine, Sayori Kiyota and Koji Nakano

Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16

Nakacho, Koganei, Tokyo, 184-8588, Japan

hrc@cc.tuat.ac.jp (MH)

Table of Contents

Figure S1. ¹ H NMR Spectrum of 2-(2,4-dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3)	6
Figure S2. ¹ H NMR Spectrum of 2,3-difluoro-1,4-bis(2,4-dimethoxyphenyl)benzene (4)	7
Figure S3. ¹³ C{ ¹ H} NMR Spectrum of 2,3-difluoro-1,4-bis(2,4-dimethoxyphenyl)benzene (4)	8
Figure S4. ¹⁹ F NMR Spectrum of 2,3-difluoro-1,4-bis(2,4-dimethoxyphenyl)benzene (4)	9
Figure S5. ¹ H NMR Spectrum of 2,3-difluoro-1,4-bis(2,4-dihydroxyphenyl)benzene (5)	10
Figure S6. ¹³ C{ ¹ H} NMR Spectrum of 2,3-difluoro-1,4-bis(2,4-dihydroxyphenyl)benzene (5)	11
Figure S7. ¹⁹ F NMR Spectrum of 2,3-difluoro-1,4-bis(2,4-dihydroxyphenyl)benzene (5)	12
Figure S8. ¹ H NMR Spectrum of dibenzo[<i>d</i> , <i>d</i> ′]benzo[2,1- <i>b</i> :3,4- <i>b</i> ′]difuran-3,8-diol (6)	13
Figure S9. ¹³ C{ ¹ H} NMR Spectrum of dibenzo[<i>d</i> , <i>d</i> ′]benzo[2,1- <i>b</i> :3,4- <i>b</i> ′]difuran-3,8-diol (6)	14
Figure S10. ¹ H NMR Spectrum of dibenzo[<i>d</i> , <i>d'</i>]benzo[2,1- <i>b</i> :3,4- <i>b'</i>]difuran-3,8-diyltrifluoromethanesulfonate	e (7)
	15
Figure S11. ¹³ C{ ¹ H} NMR Spectrum of dibenzo[<i>d</i> , <i>d'</i>]benzo[2,1- <i>b</i> :3,4- <i>b'</i>]difuran-3,8-diyltrifluoromethanesulfo (7)	onate 16
Figure S12. ¹⁹ F NMR Spectrum of dibenzo[<i>d</i> , <i>d</i> ']benzo[2,1- <i>b</i> :3,4- <i>b</i> ']difuran-3,8-diyltrifluoromethanesulfonat	e (7)
	17
Figure S13. ¹ H NMR Spectrum of 3,8-di(hex-1-yn-1-yl)dibenzo[d,d']benzo[2,1-b:3,4-b']difuran (8a)	18
Figure S14. ¹³ C{ ¹ H} NMR Spectrum of 3,8-di(hex-1-yn-1-yl)dibenzo[<i>d</i> , <i>d</i> ′]benzo[2,1- <i>b</i> :3,4- <i>b</i> ′]difuran (8a)	19
Figure S15. ¹ H NMR Spectrum of 3,8-bis(trimethylsilylethynyl)dibenzo[<i>d</i> , <i>d'</i>]benzo[2,1- <i>b</i> :3,4- <i>b'</i>]difuran (8b)	20
Figure S16. ¹³ C{ ¹ H} NMR Spectrum of 3,8-bis(trimethylsilylethynyl)dibenzo[<i>d</i> , <i>d</i> ']benzo[2,1- <i>b</i> :3,4- <i>b</i> ']difuran ((8b)
	21
Figure S17. ¹ H NMR Spectrum of 3,8-bis{(1 <i>E</i> ,3 <i>E</i> ,5 <i>E</i>)-2-butyl-6-methoxycarbonylhepta-1,3,5-trien-1-yl}dibenzo[<i>d</i> , <i>d</i> ']benzo[2,1- <i>b</i> :3,4- <i>b</i> ']difuran (9a)	22
Figure S18. ¹³ C{ ¹ H} NMR Spectrum of 3,8-bis{(1 <i>E</i> ,3 <i>E</i> ,5 <i>E</i>)-2-butyl-6-methoxycarbonylhepta-1,3,5-trien-1-yl}dibenzo[<i>d</i> , <i>d</i> ']benzo[2,1- <i>b</i> :3,4- <i>b</i> ']difuran (9a)	23
Figure S19. High resolution mass spectrum (APCI) of 3,8-bis{(1 <i>E</i> ,3 <i>E</i> ,5 <i>E</i>)-2-butyl-6-methoxycarbonylhepta-1, trien-1-yl}dibenzo[<i>d</i> , <i>d</i> ']benzo[2,1- <i>b</i> :3,4- <i>b</i> ']difuran (9a)	3,5- 24
Figure S20. ¹ H NMR Spectrum of 3,8-bis(6-methoxycarbonyl-2-trimethylsilylhepta-1,3,5-trien-1-yl)dibenzo[<i>d</i> , <i>d</i> ′]benzo[2,1- <i>b</i> :3,4- <i>b</i> ′]difuran (9b)	25
Figure S21. ¹³ C{ ¹ H} NMR Spectrum of 3,8-bis(6-methoxycarbonyl-2-trimethylsilylhepta-1,3,5-trien-1-yl)dibenzo[<i>d</i> , <i>d</i> ′]benzo[2,1- <i>b</i> :3,4- <i>b</i> ′]difuran (9b)	26
Figure S22. High resolution mass spectrum (APCI) of 3,8-bis(6-methoxycarbonyl-2-trimethylsilylhepta-1,3,5 1-yl)dibenzo[<i>d</i> , <i>d</i> ']benzo[2,1- <i>b</i> :3,4- <i>b</i> ']difuran (9b)	-trien- 27

Figure S23. ¹ H NMR Spectrum of 3,8-bis{(1 <i>E</i> ,3 <i>E</i> ,5 <i>E</i>)-2-trimethylsilylhepta-1,3,5-trien-1-yl}dibenzo[<i>d</i> , <i>d'</i>]benz <i>b</i> :3,4- <i>b'</i>]difuran (9c)	o[2,1- 28
Figure S24. ¹³ C{ ¹ H} NMR Spectrum of 3,8-bis{(1 <i>E</i> ,3 <i>E</i> ,5 <i>E</i>)-2-trimethylsilylhepta-1,3,5-trien-1-yl}dibenzo[<i>d</i> , <i>d</i> ′]benzo[2,1- <i>b</i> :3,4- <i>b</i> ′]difuran (9c)	29
Figure S25. High resolution mass spectrum (APCI) of 3,8-bis{(1 <i>E</i> ,3 <i>E</i> ,5 <i>E</i>)-2-trimethylsilylhepta-1,3,5-trien-1-yl}dibenzo[<i>d</i> , <i>d</i> ']benzo[2,1- <i>b</i> :3,4- <i>b</i> ']difuran (9c)	30
Figure S26. ¹ H NMR Spectrum of 3,8-bis{(1 <i>E</i> ,3 <i>E</i> ,5 <i>E</i>)-6-methoxycarbonylhepta-1,3,5-trien-1-yl}dibenzo[<i>d</i> , <i>d</i> ']benzo[2,1- <i>b</i> :3,4- <i>b</i> ']difuran (10b)	31
Figure S27. High resolution mass spectrum (APCI) of 3,8-bis{(1 <i>E</i> ,3 <i>E</i> ,5 <i>E</i>)-6-methoxycarbonylhepta-1,3,5-tries yl}dibenzo[<i>d</i> , <i>d</i> ′]benzo[2,1- <i>b</i> :3,4- <i>b</i> ′]difuran (10b)	n-1- 32
Figure S28. ¹ H NMR Spectrum of 3-decylanisole	33
Figure S29. ¹ H NMR Spectrum of 2,3-difluoro-4-iodo-2',4'-dimethoxy-1,1'-biphenyl (11)	34
Figure S30. ¹ H NMR Spectrum of 2-(4-decyl-2-methoxyphenyl)-4,4-5,5-tetramethyl-1,3,2-dioxaborolane (12	2) 35
Figure S31. ¹ H NMR Spectrum of 4-decyl-2,3-difluoro-4-iodo-2'-methoxy-1,1'-biphenyl (13)	36
Figure S32. ¹ H NMR Spectrum of 4-decyl-2',3'-difluoro-2,2",4"-trimethoxy-1,1':4',1"-terphenyl (14)	37
Figure S33. ¹³ C{ ¹ H} NMR Spectrum of 4-decyl-2',3'-difluoro-2,2",4"-trimethoxy-1,1':4',1"-terphenyl (14)	38
Figure S34. ¹⁹ F NMR Spectrum of 4-decyl-2',3'-difluoro-2,2",4"-trimethoxy-1,1':4',1"-terphenyl (14)	39
Figure S35. ¹ H NMR Spectrum of 4"-decyl-2',3'-difluoro[1,1':4',1"-terphenyl]-2,2",4-triol (15)	40
Figure S36. ¹³ C{ ¹ H} NMR Spectrum of 4"-decyl-2',3'-difluoro[1,1':4',1"-terphenyl]-2,2",4-triol (15)	41
Figure S37. ¹⁹ F NMR Spectrum of 4"-decyl-2',3'-difluoro[1,1':4',1"-terphenyl]-2,2",4-triol (15)	42
Figure S38. ¹ H NMR Spectrum of 8-decyldibenzo[<i>d</i> , <i>d</i> ']benzo[2,1- <i>b</i> :3,4- <i>b</i> ']difuran-3-ol (16)	43
Figure S39. ¹³ C{ ¹ H} NMR Spectrum of 8-decyldibenzo[<i>d,d</i> ']benzo[2,1- <i>b</i> :3,4- <i>b</i> ']difuran-3-ol (16)	44
Figure S40. ¹ H NMR Spectrum of 8-decyldibenzo[<i>d</i> , <i>d</i> ′]benzo[2,1- <i>b</i> :3,4- <i>b</i> ′]difuran-3-yltrifluoromethanesulfo (17)	nate 45
Figure S41. ¹³ C{ ¹ H} NMR Spectrum of 8-decyldibenzo[<i>d</i> , <i>d</i> ′]benzo[2,1- <i>b</i> :3,4- <i>b</i> ′]difuran-3-yltrifluoromethanesulfonate (17)	46
Figure S42. ¹⁹ F NMR Spectrum of 8-decyldibenzo[<i>d</i> , <i>d</i> ′]benzo[2,1- <i>b</i> :3,4- <i>b</i> ′]difuran-3-yltrifluoromethanesulfc (17)	onate 47
Figure S43. ¹ H NMR Spectrum of 3-(trimethylsilylethynyl)-8-decyldibenzo[<i>d</i> , <i>d</i> ']benzo[2,1- <i>b</i> :3,4- <i>b</i> ']difuran (1	L 8)
	48
Figure S44. ¹³ C{ ¹ H} NMR Spectrum of 3-(trimethylsilylethynyl)-8-decyldibenzo[<i>d</i> , <i>d</i> ']benzo[2,1- <i>b</i> :3,4- <i>b</i> ']difur	an (18)
	49
Figure S45. ¹ H NMR Spectrum of 3-(6-methoxycarbonyl-2-trimethylsilylhexa-1,3,5-trien-1-yl)-8-decyldibenzo[<i>d</i> , <i>d</i> ′]benzo[2,1- <i>b</i> :3,4- <i>b</i> ′]difuran (19a)	50

Figure S46. ¹³ C{ ¹ H} NMR Spectrum of 3-(6-methoxycarbonyl-2-trimethylsilylhexa-1,3,5-trien-1-yl)-8- decyldibenzo[<i>d</i> , <i>d</i> ′]benzo[2,1- <i>b</i> :3,4- <i>b</i> ′]difuran (19a)	51
Figure S47. High resolution mass spectrum (APCI) of 3-(6-methoxycarbonyl-2-trimethylsilylhexa-1,3,5-trien-8-decyldibenzo[<i>d</i> , <i>d</i> ']benzo[2,1- <i>b</i> :3,4- <i>b</i> ']difuran (19a)	-1-yl)- 52
Figure S48. ¹ H NMR Spectrum of 3-{(1 <i>E</i> ,3 <i>E</i> ,5 <i>E</i>)-2-trimethylsilylhepta-1,3,5-trien-1-yl}-8- decyldibenzo[<i>d</i> , <i>d</i> ′]benzo[2,1- <i>b</i> :3,4- <i>b</i> ′]difuran (19b)	53
Figure S49. ¹³ C{ ¹ H} NMR Spectrum of 3-{(1 <i>E</i> ,3 <i>E</i> ,5 <i>E</i>)-2-trimethylsilylhepta-1,3,5-trien-1-yl}-8- decyldibenzo[<i>d</i> , <i>d</i> ′]benzo[2,1- <i>b</i> :3,4- <i>b</i> ′]difuran (19b)	54
Figure S50. High resolution mass spectrum (APCI) of 3-{(1 <i>E</i> ,3 <i>E</i> ,5 <i>E</i>)-2-trimethylsilylhepta-1,3,5-trien-1-yl}-8-decyldibenzo[<i>d</i> , <i>d</i> ']benzo[2,1- <i>b</i> :3,4- <i>b</i> ']difuran (19b)	55
Figure S51. ¹ H NMR Spectrum of 3-{(1 <i>E</i> ,3 <i>E</i> ,5 <i>E</i>)-6-methoxycarbonylhepta-1,3,5-trien-1-yl}-8- decyldibenzo[<i>d</i> , <i>d</i> ′]benzo[2,1- <i>b</i> :3,4- <i>b</i> ′]difuran (20a)	56
Figure S52. ¹³ C{ ¹ H} NMR Spectrum of 3-{(1 <i>E</i> ,3 <i>E</i> ,5 <i>E</i>)-6-methoxycarbonylhepta-1,3,5-trien-1-yl}-8-decyldibenzo[<i>d</i> , <i>d</i> ′]benzo[2,1- <i>b</i> :3,4- <i>b</i> ′]difuran (20a)	57
Figure S53. High resolution mass spectrum (APIC) of 3-{(1 <i>E</i> ,3 <i>E</i> ,5 <i>E</i>)-6-methoxycarbonylhepta-1,3,5-trien-1-yl decyldibenzo[<i>d</i> , <i>d</i> ′]benzo[2,1- <i>b</i> :3,4- <i>b</i> ′]difuran (20a)	}-8- 58
Figure S54. UV-vis spectrum of 9a (1.00 x 10 ⁻⁵ M) in chloroform	59
Figure S55. UV-vis spectrum of 10b (1.00 x 10 ⁻⁵ M) in chloroform	59
Figure S56. UV-vis spectrum of 20a (1.00 x 10 ⁻⁵ M) in chloroform	60
Figure S57. Cyclic voltammogram of 9a	60
Figure S58. Cyclic voltammogram of 10b	61
Figure S59. Cyclic voltammogram of 20a	61
Figure S60. Top and side views of TD-DFT calculations of isomer A of 9a	62
Figure S61. Top and side views of TD-DFT calculations of isomer B of 9a	63
Figure S62. Selected orbitals by TD-DFT calculations of isomer A of 9a in chloroform	64
Figure S63. Selected orbitals by TD-DFT calculations of isomer B of 9a in chloroform	67
Figure S64. Top and side views of TD-DFT calculations of 10b	69
Figure S65. Selected orbitals by TD-DFT calculations of 10b	70
Figure S66. Top and Side views of TD-DFT calculations of 21a	72
Figure S67. Selected orbitals by TD-DFT calculations of 21a	73
Figure S68. Top and side views of TD-DFT calculations of isomer A of 22	75
Figure S69. Top and side views of TD-DFT calculations of isomer B of 22	76
Figure S70. Selected orbitals by TD-DFT calculations of isomer A of 22	77

Supplementary information	NJC	
Figure S72. Calculated Uv-vis spectrum of isomer A of 9a in chloroform by TD-DFT		82
Figure S73. Calculated Uv-vis spectrum of isomer B of 9a in chloroform by TD-DFT		82
Figure S74. Calculated Uv-vis spectrum of 10b		83
Figure S75. Calculated Uv-vis spectrum of 21a		83
Figure S76. Calculated Uv-vis spectrum of isomer A of 22		83
Figure S77. Calculated Uv-vis spectrum of isomer B of 22		84
Table S1. TD-DFT results for 9a (isomer A) in chloroform		69
Table S2. TD-DFT results for 9a (isomer B) in chloroform		77
Table S3. TD-DFT results for 10b in chloroform		101
Table S4. TD-DFT results for 21a in chloroform		112
Table S5. TD-DFT results for 22 (isomer A) in chloroform		125
Table S6. TD-DFT results for 22 (isomer B) in chloroform		135
Table S7. Cartesian coordinates of isomer A of 9a by TD-DFT calculations		145
Table S8. Cartesian coordinates of isomer B of 9a by TD-DFT calculations		149
Table S9. Cartesian coordinates of 10b by TD-DFT calculations		153
Table S10. Cartesian coordinates of 21a by TD-DFT calculations		156
Table S11. Cartesian coordinates of isomer A of 22 by TD-DFT calculations		159
Table S12. Cartesian coordinates of isomer B of 22 by TD-DFT calculations		162

Figure S1. ¹H NMR Spectrum of 2-(2,4-dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**3**) (400 MHz, CDCl₃, r.t.). Xs indicate incorporated ethyl acetate.

Figure S2. ¹H NMR Spectrum of 2,3-difluoro-1,4-bis(2,4-dimethoxyphenyl)benzene (4) (400 MHz, CDCl₃, r.t.).

Figure S3. ¹³C{¹H} NMR Spectrum of 2,3-difluoro-1,4-bis(2,4-dimethoxyphenyl)benzene (4) (100 MHz, CDCl₃, r.t.).

Figure S4. ¹⁹F NMR Spectrum of 2,3-difluoro-1,4-bis(2,4-dimethoxyphenyl)benzene (4) (376 MHz, CDCl₃, r.t.).

Figure S5. ¹H NMR Spectrum of 2,3-difluoro-1,4-bis(2,4-dihydroxyphenyl)benzene (5) (400 MHz, CD₃OD, r.t.).

Figure S6. ¹³C{¹H} NMR Spectrum of 2,3-difluoro-1,4-bis(2,4-dihydroxyphenyl)benzene (**5**) (100 MHz, CD₃OD, r.t.).

Figure S7. ¹⁹F NMR Spectrum of 2,3-difluoro-1,4-bis(2,4-dihydroxyphenyl)benzene (5) (376 MHz, CD₃OD, r.t.).

Figure S8. ¹H NMR Spectrum of dibenzo[d,d']benzo[2,1-b:3,4-b']difuran-3,8-diol (6) (400 MHz, CDCl₃, r.t.).

Because of low solubility, the incorporated solvent resonances were also observed.

Figure S9. ¹³C{¹H} NMR Spectrum of dibenzo[d,d']benzo[2,1-b:3,4-b']difuran-3,8-diol (**6**) (100 MHz, CDCl₃, r.t.). Because compound shows low solubility to the solvent, impurities were found in the aliphatic region.

Figure S10. ¹H NMR Spectrum of dibenzo[*d*,*d'*]benzo[2,1-*b*:3,4-*b'*]difuran-3,8-diyltrifluoromethanesulfonate (**7**) (400 MHz, CDCl₃, r.t.).

Figure S11. ¹³C{¹H} NMR Spectrum of dibenzo[*d*,*d'*]benzo[2,1-*b*:3,4-*b'*]difuran-3,8-diyltrifluoromethanesulfonate (7) (100 MHz, CDCl₃, r.t.).

Figure S12. ¹⁹F NMR Spectrum of dibenzo[*d*,*d*′]benzo[2,1-*b*:3,4-*b*′]difuran-3,8-diyltrifluoromethanesulfonate (**7**)

(376 MHz, CDCl₃, r.t.).

CDCl₃, r.t.).

Figure S14. ¹³C{¹H} NMR Spectrum of 3,8-di(hex-1-yn-1-yl)dibenzo[*d*,*d'*]benzo[2,1-*b*:3,4-*b'*]difuran (**8a**) (100 MHz, CDCl₃, r.t.). X indicates incorporated 1,4-dioxane.

Figure S15. ¹H NMR Spectrum of 3,8-bis(trimethylsilylethynyl)dibenzo[*d*,*d'*]benzo[2,1-*b*:3,4-*b'*]difuran (**8b**) (400 MHz, CDCl₃, r.t.).

Figure S16. ¹³C{¹H} NMR Spectrum of 3,8-bis(trimethylsilylethynyl)dibenzo[*d*,*d'*]benzo[2,1-*b*:3,4-*b'*]difuran (**8b**) (100 MHz, CDCl₃, r.t.). X indicates an impurity.

Figure S17. ¹H NMR Spectrum of 3,8-bis{(1*E*,3*E*,5*E*)-2-butyl-6-methoxycarbonylhepta-1,3,5-trien-1-

yl}dibenzo[*d,d'*]benzo[2,1-*b*:3,4-*b'*]difuran (**9a**) (400 MHz, CDCl₃, r.t.).

Figure S18. ¹³C{¹H} NMR Spectrum of 3,8-bis{(1*E*,3*E*,5*E*)-2-butyl-6-methoxycarbonylhepta-1,3,5-trien-1-

yl}dibenzo[*d*,*d'*]benzo[2,1-*b*:3,4-*b'*]difuran (**9a**) (100 MHz, CDCl₃, r.t.).

Figure S19. High resolution mass spectrum (APCI) of 3,8-bis{(1*E*,3*E*,5*E*)-2-butyl-6-methoxycarbonylhepta-1,3,5-trien-1-yl}dibenzo[*d*,*d'*]benzo[2,1-*b*:3,4-*b'*]difuran (**9a**).

yl)dibenzo[d,d']benzo[2,1-b:3,4-b']difuran (**9b**) (400 MHz, CDCl₃, r.t.). This compound contained (1E,3E,5E)-**9b** and (1Z,3E,5E)-**9b**.

Figure S21. ¹³C{¹H} NMR Spectrum of 3,8-bis(6-methoxycarbonyl-2-trimethylsilylhepta-1,3,5-trien-1-

yl)dibenzo[*d*,*d'*]benzo[2,1-*b*:3,4-*b'*]difuran (**9b**) (100 MHz, CDCl₃, r.t.).

NJC

nalysis Info				Acquisition Date	2/24/2021 7:10:11 F	M
nalysis Name lethod Sample Name Comment	D:\Data\HiranoLab\OKH0583.d apci_pos_wide_low_140605.m OKH0583			Operator Instrument / Ser#	BDAL micrOTOF-Q II	10323
cquisition Param	eter					
cource Type focus fican Begin fican End	APCI Not active 100 m/z 2000 m/z	lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4500 ∨ -500 ∨ 150.0 ∨pp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.6 Bar 200 °C 3.0 l/min Waste	
Intens x10 ⁵ 6-						+MS, 0.7min #40
4- 2-	643.23	52				
200	400 600	800	1000 120	0 1400	1600 180	0 m/:

Figure S22. High resolution mass spectrum (APCI) of 3,8-bis(6-methoxycarbonyl-2-trimethylsilylhepta-1,3,5-trien-1-yl)dibenzo[*d*,*d*′]benzo[2,1-*b*:3,4-*b*′]difuran (**9b**).

Figure S23. ¹H NMR Spectrum of 3,8-bis{(1*E*,3*E*,5*E*)-2-trimethylsilylhepta-1,3,5-trien-1-yl}dibenzo[*d*,*d*']benzo[2,1*b*:3,4-*b*']difuran (**9c**) (400 MHz, C₆D₆, r.t.).

Figure S24. ¹³C{¹H} NMR Spectrum of 3,8-bis{(1*E*,3*E*,5*E*)-2-trimethylsilylhepta-1,3,5-trien-1-

yl}dibenzo[*d*,*d*′]benzo[2,1-*b*:3,4-*b*′]difuran (**9c**) (100 MHz, CDCl₃, r.t.).

S 29

Figure S25. High resolution mass spectrum (APCI) of 3,8-bis{(1E,3E,5E)-2-trimethylsilylhepta-1,3,5-trien-1-

yl}dibenzo[*d*,*d'*]benzo[2,1-*b*:3,4-*b'*]difuran (**9c**).

Figure S26. ¹H NMR Spectrum of 3,8-bis{(1*E*,3*E*,5*E*)-6-methoxycarbonylhepta-1,3,5-trien-1-

yl}dibenzo[*d*,*d*′]benzo[2,1-*b*:3,4-*b*′]difuran (**10b**) (400 MHz, CDCl₃, r.t.).

Figure S27. High resolution mass spectrum (APCI) of 3,8-bis{(1*E*,3*E*,5*E*)-6-methoxycarbonylhepta-1,3,5-trien-1-yl}dibenzo[*d*,*d*']benzo[2,1-*b*:3,4-*b*']difuran (**10b**).

Figure S28. ¹H NMR Spectrum of 3-decylanisole (400 MHz, CDCl₃, r.t.).

Figure S29. ¹H NMR Spectrum of 2,3-difluoro-4-iodo-2',4'-dimethoxy-1,1'-biphenyl (11) (400 MHz, CDCl₃, r.t.).

Figure S30. ¹H NMR Spectrum of 2-(4-decyl-2-methoxyphenyl)-4,4-5,5-tetramethyl-1,3,2-dioxaborolane (**12**) (400 MHz, CDCl₃, r.t.).

Figure S31. ¹H NMR Spectrum of 4-decyl-2,3-difluoro-4-iodo-2'-methoxy-1,1'-biphenyl (13) (400 MHz, CDCl₃, r.t.).

Figure S32. ¹H NMR Spectrum of 4-decyl-2',3'-difluoro-2,2",4"-trimethoxy-1,1':4',1"-terphenyl (14) (400 MHz,

Figure S33. ¹³C{¹H} NMR Spectrum of 4-decyl-2',3'-difluoro-2,2",4"-trimethoxy-1,1':4',1"-terphenyl (**14**) (100 MHz,

Figure S34. ¹⁹F NMR Spectrum of 4-decyl-2',3'-difluoro-2,2",4"-trimethoxy-1,1':4',1"-terphenyl (14) (376 MHz,

r.t.).

Figure S36. ¹³C{¹H} NMR Spectrum of 4"-decyl-2',3'-difluoro[1,1':4',1"-terphenyl]-2,2",4-triol (15) (100 MHz,

Supplementary information

Figure S37. ¹⁹F NMR Spectrum of 4"-decyl-2',3'-difluoro[1,1':4',1"-terphenyl]-2,2",4-triol (15) (376 MHz, CDCl₃,

r.t.).

Figure S38. ¹H NMR Spectrum of 8-decyldibenzo[*d*,*d*′]benzo[2,1-*b*:3,4-*b*′]difuran-3-ol (**16**) (400 MHz, CDCl₃, r.t.).

S 43

Figure S39. ¹³C{¹H} NMR Spectrum of 8-decyldibenzo[*d*,*d*′]benzo[2,1-*b*:3,4-*b*′]difuran-3-ol (**16**) (100 MHz, CDCl₃,

r.t.).

Figure S40. ¹H NMR Spectrum of 8-decyldibenzo[*d*,*d*′]benzo[2,1-*b*:3,4-*b*′]difuran-3-yltrifluoromethanesulfonate (**17**) (400 MHz, CDCl₃, r.t.). Xs indicate incorporated ethyl acetate.

Figure S41. ¹³C{¹H} NMR Spectrum of 8-decyldibenzo[*d*,*d*']benzo[2,1-*b*:3,4-*b*']difuran-3-

yltrifluoromethanesulfonate (17) (100 MHz, CDCl₃, r.t.). Xs indicate incorporated acetone.

Figure S42. ¹⁹F NMR Spectrum of 8-decyldibenzo[*d*,*d*′]benzo[2,1-*b*:3,4-*b*′]difuran-3-yltrifluoromethanesulfonate

(17) (376 MHz, CDCl₃, r.t.).

Figure S43. ¹H NMR Spectrum of 3-(trimethylsilylethynyl)-8-decyldibenzo[*d*,*d*']benzo[2,1-*b*:3,4-*b*']difuran (**18**) (400 MHz, CDCl₃, r.t.).

Figure S44. ¹³C{¹H} NMR Spectrum of 3-(trimethylsilylethynyl)-8-decyldibenzo[*d*,*d'*]benzo[2,1-*b*:3,4-*b'*]difuran (**18**) (100 MHz, CDCl₃, r.t.).

Figure S45. ¹H NMR Spectrum of 3-(6-methoxycarbonyl-2-trimethylsilylhexa-1,3,5-trien-1-yl)-8-

decyldibenzo[*d*,*d*']benzo[2,1-*b*:3,4-*b*']difuran (**19a**) (400 MHz, CDCl₃, r.t.).

Figure S46. ¹³C{¹H} NMR Spectrum of 3-(6-methoxycarbonyl-2-trimethylsilylhexa-1,3,5-trien-1-yl)-8-

decyldibenzo[*d*,*d*']benzo[2,1-*b*:3,4-*b*']difuran (**19a**) (100 MHz, CDCl₃, r.t.).

Figure S47. High resolution mass spectrum (APCI) of 3-(6-methoxycarbonyl-2-trimethylsilylhexa-1,3,5-trien-1-yl)-8-decyldibenzo[*d*,*d'*]benzo[2,1-*b*:3,4-*b'*]difuran (**19a**).

Figure S48. ¹H NMR Spectrum of 3-{(1*E*,3*E*,5*E*)-2-trimethylsilylhepta-1,3,5-trien-1-yl}-8-

decyldibenzo[*d*,*d*′]benzo[2,1-*b*:3,4-*b*′]difuran (**19b**) (400 MHz, CDCl₃, r.t.).

Figure S49. ¹³C{¹H} NMR Spectrum of 3-{(1*E*,3*E*,5*E*)-2-trimethylsilylhepta-1,3,5-trien-1-yl}-8-

decyldibenzo[*d*,*d*']benzo[2,1-*b*:3,4-*b*']difuran (**19b**) (100 MHz, CDCl₃, r.t.).

						A 1 10 B 1	0/0 //000 / 7 00 11 7	
alvsis Name	D:\Data\Hiranol at)OKH0713 d				Acquisition Date	2/24/2021 7:02:13 PI	VI
thod	apci_pos_wide_lo	w_140605.m				Operator	BDAL	
mple Name	OKH0713	-				Instrument / Ser#	micrOTOF-Q II	10323
mment								
quisition Parameter								
urce Type cus	APCI Not active		ion Polarity Set Capillary	Positive 4500 V		Set Nebulizer Set Dry Heater	1.6 Bar 200 °C	
an Begin	100 m/z		Set End Plate Offset	-500 V		Set Dry Gas	3.0 l/min	
an End	2000 m/z		Set Collision Cell RF	150.0 Vpp		Set Divert Valve	Waste	
ntens								+MS, 1.7min #104
X10 ²								
1.5								
-		563.3327						
1.0								
-								
0.5								
	440 2442							
0.0 1.1.1.	419.3143	- ulask	· · · · · · ·					. , , ,
200	400	600	800	1000	1200	1400	1600 1800	0 m/z
Meas. m/z #	≠ Formula	Score m	/z err [mDa] err [pp	m] mSigma	rdb e ⁻ Co	nf N-Rule		
563.3327	1 C 38 H 47 O 2 Si	100.00 563.33	10 1.3	2.3 8.1 1	6.5 even	ok		
	7							
	> 6							
	ີ້							

Figure S50. High resolution mass spectrum (APCI) of 3-{(1*E*,3*E*,5*E*)-2-trimethylsilylhepta-1,3,5-trien-1-yl}-8decyldibenzo[*d*,*d*′]benzo[2,1-*b*:3,4-*b*′]difuran (**19b**).

Figure S51. ¹H NMR Spectrum of 3-{(1*E*,3*E*,5*E*)-6-methoxycarbonylhepta-1,3,5-trien-1-yl}-8-

decyldibenzo[*d*,*d*']benzo[2,1-*b*:3,4-*b*']difuran (**20a**) (400 MHz, CDCl₃, r.t.).

Figure S52. ¹³C{¹H} NMR Spectrum of 3-{(1*E*,3*E*,5*E*)-6-methoxycarbonylhepta-1,3,5-trien-1-yl}-8-

decyldibenzo[*d*,*d*']benzo[2,1-*b*:3,4-*b*']difuran (**20a**) (100 MHz, CDCl₃, r.t.).

				Mass	Spectr	um Sm	nartFo	mu	la Rep	port			
Analysis Info			id			Ac			uisition Date	2/24/2021 6:55:02 PM			
Method Sample Nam Comment	apci_pos_wide_low OKH0715	i_pos_wide_low_140605.m H0715						Operator Instrument / Ser#		BDAL micrOTOF-Q II 10323			
Acquisition	Parameter												
Source Type Focus Scan Begin Scan End		APCI Not active 100 m/z 2000 m/z		lon F Set C Set E Set C	olarity Capillary End Plate Offs Collision Cell F	et RF	Positive 4500 V -500 V 150.0 Vpp			Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve		1.6 Bar 200 °C 3.0 I/min Waste	
Intens. ×104- 6- 4- 2- 0-	275.16	419.3164 527	35.2829 607.3	224	•								+MS, 0.5min #2
	200	400	600		800	100	0	120	0	1400	1600	1800	m/
M	leas. m/z #	Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e Conf	N-Rule			
	000.2829 1	C 30 H 39 U 4 C 37 H 35 N 4	34.65	535 2856	1.3	∠.5 5.0	30.5	22.5	even	OK OK			
	3	C 32 H 35 N 6 O 2	80.99	535.2816	-1.3	-2.5	38.7	18.5	even	ok			
	4	C 31 H 39 N 2 O 6	24.86	535.2803	-2.7	-5.0	44.3	13.5	even	ok			

Figure S53. High resolution mass spectrum (APIC) of 3-{(1*E*,3*E*,5*E*)-6-methoxycarbonylhepta-1,3,5-trien-1-yl}-8-decyldibenzo[*d*,*d*']benzo[2,1-*b*:3,4-*b*']difuran (**20a**).

Figure S54. UV-vis spectrum of **9a** (1.00×10^{-5} M) in chloroform.

Figure S55. UV-vis spectrum of **10b** (1.00×10^{-5} M) in chloroform.

Figure S56. UV-vis spectrum of 20a ($1.00 \times 10^{-5} \text{ M}$) in chloroform.

Figure S57. Cyclic voltammogram of **9a** in a dichloromethane solution at the Pt electrodes with $[Bu_4N][ClO_4]$ (0.1 M) as the supporting electrolyte at a sweep rate of 50 m Vs⁻¹. Platinum was employed as the working electrode, and the potential scale was corrected with the standard redox potential of ferrocene (*E* = +0.380 V).

Figure S58. Cyclic voltammogram of **10b** in a dichloromethane solution at the Pt electrodes with $[Bu_4N][CIO_4]$ (0.1 M) as the supporting electrolyte at a sweep rate of 50 m Vs⁻¹. Platinum was employed as the working electrode, and the potential scale was corrected with the standard redox potential of ferrocene (E = +0.380 V).

Figure S59. Cyclic voltammogram of **20a** in a dichloromethane solution at the Pt electrodes with $[Bu_4N][CIO_4]$ (0.1 M) as the supporting electrolyte at a sweep rate of 50 m Vs⁻¹. Platinum was employed as the working electrode, and the potential scale was corrected with the standard redox potential of ferrocene (*E* = +0.380 V).

Figure S60. Top and side views of TD-DFT calculations of **9a** of isomer A (the most stable isomer). $\Delta H^{\circ} = 0$ kcal mol⁻¹, $\Delta G^{\circ} = 0$ kcal mol⁻¹.

Figure S61. Top and side views of TD-DFT calculations of **9a** of isomer B (the second stable isomer). $\Delta H^{\circ} = 0.064$ kcal mol⁻¹, $\Delta G^{\circ} = 0.087$ kcal mol⁻¹.

LUMO+9 (181) 2.9646 eV

LUMO+7 (179) 2.1212 eV

LUMO+8 (180) 2.7073 eV

LUMO+6 (178) 1.7727 eV

LUMO+5 (177) 1.5053 eV

LUMO+4 (176) 1.4693 eV

LUMO+3 (175) 1.0007 eV

LUMO+2 (174) 0.3062 eV

Figure S62. Selected orbitals by TD-DFT calculations of isomer A of **9a** in chloroform. Orbital numbers in parenthesis and orbital energy in eV.

LUMO+1 (173) -0.5349 eV

HOMO (171) -7.4018 eV

HOMO-2 (169) -8.3348 eV

LUMO (172) -0.7634 eV

HOMO-1 (170) -7.8474 eV

HOMO-3 (168) -8.5436 eV

HOMO-4 (167) -9.0632 eV

Figure S62. continued.

HOMO-5 (166) -9.4058 eV

HOMO-6 (165) -9.6846 eV

HOMO-8 (163) -9.9943 eV

HOMO-7 (164) -9.9937 eV

HOMO-9 (162) -10.0257 eV

Figure S62. continued.

LUMO+9 (181) 2.9633 eV

LUMO+7 (179) 2.1252 eV

LUMO+8 (180) 2.7182 eV

LUMO+6 (178) 1.7709 eV

LUMO+5 (177) 1.5007 eV

LUMO+4 (176) 1.4681 eV

LUMO+3 (175) 1.0000 eV

LUMO+2 (174) 0.3102 eV

Figure S63. Selected orbitals by TD-DFT calculations of isomer B of **9a** in chloroform. Orbital numbers in parenthesis and orbital energy in eV.

LUMO+1 (173) -0.5380 eV

HOMO (171) -7.3948 eV

HOMO-2 (169) -8.3352 eV

HOMO-4 (167) -9.0639 eV

Figure S63. continued.

LUMO (172) -0.7704 eV

HOMO-1 (170) -7.8418 eV

HOMO-3 (168) -8.5480 eV

HOMO-5 (166) -9.4065 eV

HOMO-6 (165) -9.6852 eV

HOMO-8 (163) -9.9932 eV

HOMO-9 (162) -10.0237 eV

Figure S63. continued.

LUMO+9 (149) 3.2453 eV

LUMO+7 (147) 2.2357 eV

LUMO+8 (148) 2.9459 eV

LUMO+6 (146) 1.7459 eV

LUMO+5 (145) 1.4278 eV

LUMO+4 (144) 1.3611 eV

LUMO+3 (143) 0.9935 eV

LUMO+2 (142) 0.3801 eV

LUMO (140) -0.9546 eV

LUMO+1 (141) -0.6928 eV

Figure S65. Selected orbitals by TD-DFT calculations of **10b** in chloroform. Orbital numbers in parenthesis and orbital energy in eV.

HOMO (139) -7.3104 eV

HOMO-2 (137) -8.3659 eV

HOMO-4 (135) -9.1159 eV

HOMO-6 (133) -9.7273 eV

HOMO-1 (138) -7.8057 eV

HOMO-3 (136) -8.6947 eV

HOMO-5 (134) -9.5633 eV

HOMO-7 (132) -10.0087 eV

HOMO-8 (131) -10.0087 eV

Figure S65. continued.

HOMO-9 (130) -10.2688 eV

Figure S66. Top and side views of TD-DFT calculations of 21a.
LUMO+9 (137) 3.2963 eV

LUMO+7 (135) 3.2011 eV

LUMO+5 (133) 1.9789 eV

LUMO+3 (131) 1.4461 eV

LUMO+8 (136) 3.2657 eV

LUMO+6 (134) 2.6539 eV

LUMO+4 (132) 1.6174 eV

LUMO+2 (130) 1.0913 eV

Figure S67. Selected orbitals by TD-DFT calculations of **21a** in chloroform. Orbital numbers in parenthesis and orbital energy in eV.

LUMO+1 (129) 0.3315 eV

HOMO (127) -7.3991 eV

HOMO-2 (125) -8.2895 eV

HOMO-4 (123) -9.3671 eV

HOMO-6 (121) -10.0037 eV

Figure S67. continued.

LUMO (128) -0.8205 eV

HOMO-1 (126) -8.2316 eV

HOMO-3 (124) -9.0030 eV

HOMO-5 (122) -9.6339 eV

HOMO-7 (120) -10.2793 eV

HOMO-8 (119) -10.6376 eV

HOMO-9 (118) - -10.7496 eV

Figure S67. continued.

Figure S68. Top and side views of TD-DFT calculations of **22** of isomer A (The most stable isomer). $\Delta H^{\circ} = 0$ kcal mol⁻¹, $\Delta G^{\circ} = 0$ kcal mol⁻¹.

Figure S69. Top and side views of TD-DFT calculations of **22** of isomer B (The second stable isomer). $\Delta H^{\circ} = 0.0446$ kcal mol⁻¹, $\Delta G^{\circ} = 0.612$ kcal mol⁻¹.

LUMO+9 (125) 3.5540 eV

LUMO+7 (123) 3.2787 eV

LUMO+8 (124) 3.5516 eV

LUMO+6 (122) 3.2663 eV

LUMO+5 (121) 3.0771 eV

LUMO+4 (120) 2.3346 eV

LUMO+3 (119) 1.7792 eV

LUMO+2 (118) 1.6189 eV

Figure S70. Selected orbitals by TD-DFT calculations of **22** (isomer A) in chloroform. Orbital numbers in parenthesis and orbital energy in eV.

LUMO+1 (117) 1.2561 eV

HOMO (115) -7.6477 eV

HOMO-2 (113) -8.8864 eV

LUMO (116) 0.2730 eV

HOMO-1 (114) -8.1785 eV

HOMO-3 (112) -9.0080 eV

HOMO-4 (111) -9.5223 eV

Figure S70. continued.

HOMO-5 (110) -10.2894 eV

HOMO-6 (109) -10.7111 eV

HOMO-7 (108) -10.8010 eV

HOMO-8 (107) -10.9070 eV

HOMO-9 (106) - -10.9070 eV

Figure S70. continued.

LUMO+9 (125) 3.5603 eV

LUMO+7 (123) 3.2808 eV

LUMO+5 (121) 3.0771 eV

LUMO+3 (119) 1.7798 eV

LUMO+8 (124) 3.5449 eV

LUMO+6 (122) 3.2637 eV

LUMO+4 (120) 2.3346 eV

LUMO+2 (118) 1.6192 eV

Figure S71. Selected orbitals by TD-DFT calculations of **22** (isomer B) in chloroform. Orbital numbers in parenthesis and orbital energy in eV.

LUMO+1 (117) 1.2561 eV

HOMO (115) -7.6479 eV

LUMO (116) 0.2727 eV

HOMO-1 (114) -8.1784 eV

HOMO-2 (113) -8.8863 eV

HOMO-3 (112) -9.0079 eV

HOMO-4 (111) -9.5222 eV

Figure S71. continued.

HOMO-5 (110) -10.2887 eV

HOMO-6 (109) -10.7156 eV

HOMO-8 (107) -10.9070 eV

HOMO-7 (108) -10.7965 eV

HOMO-9 (106) -10.9070 eV

Figure S71. continued.

300,000

250,000

<u>čz</u>

Figure S74. Calculated Uv-vis spectrum of 10b in chloroform by TD-DFT.

Figure S75. Calculated Uv-vis spectrum of 21a in chloroform by TD-DFT.

Figure S76. Calculated Uv-vis spectrum of isomer A of 22 in chloroform by TD-DFT.

Figure S77. Calculated Uv-vis spectrum of isomer B of 22 in chloroform by TD-DFT.

Table S1. TD-DFT results for 9a (isomer A) in chloroform.

nm f=4.2221

nm f=0.5790

Excited State 1: 3.5	5379 eV	350.64
$168 \rightarrow 174$	0.156	09
$170 \rightarrow 173$	0.356	10
$171 \rightarrow 172$	0.563	82
$171 \rightarrow 174$	-0.105	74
Excited State 2: 3.8	8103 eV	325.39
$168 \rightarrow 173$	0.167	27
$170 \rightarrow 172$	0.464	52

 $171 \rightarrow 173$ 0.46927

Excited State 3: 4.4334 eV 279.66 nm f=0.0922

$167 \rightarrow 173$	0.13847
$167 \rightarrow 175$	-0.13052
$169 \rightarrow 172$	0.48832
$169 \rightarrow 174$	-0.35418
$171 \rightarrow 176$	-0.18041

Excited State 4: 4.4392 eV 279.29 nm f=0.0609

$166 \rightarrow 173$	0.10254
$167 \rightarrow 172$	0.11671
$168 \rightarrow 172$	0.34349
$169 \rightarrow 175$	-0.11723
$170 \rightarrow 173$	0.30507
$171 \rightarrow 174$	0.42207

Excited State 5: 4.8419 eV 256.06 nm f=0.0038

$165 \rightarrow 173$	-0.12192
$166 \rightarrow 176$	-0.10575
$167 \rightarrow 172$	0.38201

$167 \rightarrow 174$	-0.20274
$168 \rightarrow 172$	-0.18305
$169 \rightarrow 173$	0.26417
$169 \rightarrow 175$	-0.18196
$170 \rightarrow 176$	0.11602
$171 \rightarrow 177$	-0.22812

Excited State 6: 4.9087 eV 252.58 nm f=0.0181

$165 \rightarrow 172$	-0.15338
$166 \rightarrow 172$	0.21967
$167 \rightarrow 173$	0.13396
$168 \rightarrow 173$	0.27203
$170 \rightarrow 174$	0.26366
$171 \rightarrow 175$	0.35763
$171 \rightarrow 176$	0.15791

Excited State 7: 5.0206 eV 246.95 nm f=0.0002

$163 \rightarrow 172$	-0.24948
$163 \rightarrow 173$	-0.30009
$163 \rightarrow 174$	-0.18365
$163 \rightarrow 175$	-0.14125
$164 \rightarrow 172$	0.26123
$164 \rightarrow 173$	0.29368
$164 \rightarrow 174$	0.19224
$164 \rightarrow 175$	0.13347

Excited State 8: 5.0207 eV 246.95 nm f=0.0002

$163 \rightarrow 172$	-0.26354
$163 \rightarrow 173$	0.28625
$163 \rightarrow 174$	-0.19401

$163 \rightarrow 175$	0.13475
$163 \rightarrow 179$	-0.10010
$164 \rightarrow 172$	-0.24727
$164 \rightarrow 173$	0.29735
$164 \rightarrow 174$	-0.18198
$164 \rightarrow 175$	0.13990

Excited State 9: 5.1937 eV 238.72 nm f=0.0113

$165 \rightarrow 172$	-0.10813
$166 \rightarrow 172$	-0.15400
$166 \rightarrow 174$	-0.13325
$168 \rightarrow 173$	-0.30529
$170 \rightarrow 172$	-0.28870
$170 \rightarrow 174$	0.21884
$171 \rightarrow 173$	0.35037
$171 \rightarrow 176$	0.14552

Excited State 10: 5.3162 eV 233.22 nm f=0.0424

$162 \rightarrow 173$	0.10955
$165 \rightarrow 172$	0.22881
$165 \rightarrow 174$	-0.15081
$166 \rightarrow 172$	0.17196
$167 \rightarrow 173$	-0.13867
$168 \rightarrow 175$	0.18629
$169 \rightarrow 174$	-0.12682
$170 \rightarrow 172$	-0.18937
$170 \rightarrow 174$	0.31380
$170 \rightarrow 177$	0.16748
$171 \rightarrow 173$	0.11032
$171 \rightarrow 176$	-0.10365

 $171 \rightarrow 178$ 0.23435

Excited State 11: 5.3596 eV 231.33 nm f=0.1345

$166 \rightarrow 173$	-0.23913
$167 \rightarrow 172$	-0.11778
$168 \rightarrow 172$	-0.36329
$169 \rightarrow 173$	-0.11854
$170 \rightarrow 175$	0.19174
$171 \rightarrow 172$	0.11058
$171 \rightarrow 174$	0.40499

Excited State 12: 5.5851 eV 221.99 nm f=0.0140

$162 \rightarrow 172$	0.23650
$165 \rightarrow 175$	0.10014
$166 \rightarrow 173$	0.24321
$167 \rightarrow 172$	0.15021
$167 \rightarrow 174$	-0.10791
$168 \rightarrow 174$	0.28713
$169 \rightarrow 173$	-0.11851
$169 \rightarrow 175$	0.16127
$169 \rightarrow 176$	-0.12245
$169 \rightarrow 178$	-0.17881
$170 \rightarrow 175$	0.28445
$171 \rightarrow 179$	0.19392

Excited State 13: 5.6404 eV 219.82 nm f=0.3002

$166 \rightarrow 176$	0.11302
$168 \rightarrow 172$	-0.13076
$168 \rightarrow 174$	0.15242
$169 \rightarrow 173$	0.36688

$169 \rightarrow 175$	-0.21167
$169 \rightarrow 176$	0.10456
$170 \rightarrow 175$	0.13003
$170 \rightarrow 176$	-0.16057
$170 \rightarrow 178$	0.12354
$171 \rightarrow 177$	0.36679

Excited State 14: 5.6869 eV 218.02 nm f=0.2181

$162 \rightarrow 173$	0.10320
$166 \rightarrow 172$	0.20204
$168 \rightarrow 178$	-0.16425
$169 \rightarrow 172$	-0.26610
$170 \rightarrow 177$	-0.20147
$171 \rightarrow 175$	-0.30581
$171 \rightarrow 176$	0.36729
$171 \rightarrow 178$	0.13134

Excited State 15: 5.7949 eV 213.95 nm f=0.0001

$162 \rightarrow 173$	0.10705
$165 \rightarrow 172$	-0.25009
$166 \rightarrow 172$	0.17251
$167 \rightarrow 173$	0.29844
$169 \rightarrow 172$	0.11933
$169 \rightarrow 174$	0.21731
$169 \rightarrow 177$	-0.10336
$170 \rightarrow 172$	-0.10259
$170 \rightarrow 177$	0.11256
$171 \rightarrow 173$	0.10242
$171 \rightarrow 175$	-0.23204
$171 \rightarrow 176$	-0.25980

 $171 \rightarrow 178$ 0.11915

Excited State 16: 5.9410 eV 208.69 nm f=0.6529

$162 \rightarrow 172$	-0.17585
$166 \rightarrow 173$	-0.15060
$167 \rightarrow 172$	0.24130
$167 \rightarrow 174$	-0.22827
$167 \rightarrow 177$	0.14487
$168 \rightarrow 174$	-0.14238
$169 \rightarrow 173$	-0.16087
$169 \rightarrow 175$	0.10215
$169 \rightarrow 176$	-0.24285
$170 \rightarrow 176$	-0.23070
$171 \rightarrow 177$	0.26862
$171 \rightarrow 179$	-0.12959

Excited State 17: 5.9641 eV 207.88 nm f=0.0335

$161 \rightarrow 172$	-0.15452
$162 \rightarrow 173$	-0.24740
$165 \rightarrow 174$	-0.10408
$166 \rightarrow 172$	-0.24380
$167 \rightarrow 173$	0.12264
$167 \rightarrow 176$	0.17261
$168 \rightarrow 178$	-0.11458
$169 \rightarrow 174$	0.20820
$169 \rightarrow 177$	-0.20545
$170 \rightarrow 172$	0.14318
$170 \rightarrow 174$	0.10358
$171 \rightarrow 173$	-0.13450
$171 \rightarrow 178$	0.27393

 $171 \rightarrow 180$ 0.11525

Excited State 18: 6.0440 eV 205.14 nm f=0.0012

$162 \rightarrow 172$	-0.11998
$166 \rightarrow 173$	-0.17251
$168 \rightarrow 172$	-0.13428
$168 \rightarrow 174$	0.18887
$169 \rightarrow 175$	0.12252
$169 \rightarrow 178$	-0.12580
$170 \rightarrow 173$	0.40293
$171 \rightarrow 172$	-0.34965
$171 \rightarrow 174$	-0.12939

Excited State 19: 6.0902 eV 203.58 nm f=0.0221

$161 \rightarrow 172$	0.13576
$165 \rightarrow 172$	-0.20427
$165 \rightarrow 174$	0.17596
$166 \rightarrow 172$	-0.12400
$166 \rightarrow 174$	0.15889
$167 \rightarrow 175$	-0.11172
$167 \rightarrow 176$	-0.16777
$168 \rightarrow 175$	0.21619
$169 \rightarrow 172$	-0.19066
$169 \rightarrow 174$	-0.12442
$169 \rightarrow 177$	0.17656
$170 \rightarrow 177$	0.16336
$170 \rightarrow 179$	0.18051
$171 \rightarrow 173$	-0.13707
$171 \rightarrow 178$	0.23007

Excited State 20: 6.0)970 eV	203.35 nm	f=0.0148
$161 \rightarrow 173$	-0.1809	5	

$162 \rightarrow 172$	-0.20633
$165 \rightarrow 173$	-0.18467
$166 \rightarrow 175$	-0.10297
$167 \rightarrow 172$	0.14504
$167 \rightarrow 174$	0.18755
$167 \rightarrow 177$	-0.20855
$169 \rightarrow 175$	0.26820
$169 \rightarrow 176$	0.27108
$169 \rightarrow 178$	-0.17000
$170 \rightarrow 173$	-0.10458
$171 \rightarrow 172$	0.10462

Table S2. TD-DFT results for 9a (isomer B) in chloroform.

Excited State 1: 3.52	256 eV	351.66 nm	f=4.3226
$168 \rightarrow 174$	-0.155	513	
$170 \rightarrow 173$	0.355	67	
$171 \rightarrow 172$	0.564	94	
$171 \rightarrow 174$	-0.104	.05	

Excited State 2: 3.8016 eV 326.14 nm f=0.4673

$168 \rightarrow 173$	-0.16495
$170 \rightarrow 172$	0.46455
$171 \rightarrow 173$	0.47020

Excited State 3: 4.4295 eV 279.91 nm f=0.0908

$167 \rightarrow 173$	0.13982
$167 \rightarrow 175$	0.13003
$169 \rightarrow 172$	0.49051
$169 \rightarrow 174$	-0.35138
$171 \rightarrow 176$	0.17977

Excited State 4: 4.4374 eV 279.41 nm f=0.0857

$166 \rightarrow 173$	0.10227
$167 \rightarrow 172$	0.11871
$168 \rightarrow 172$	-0.34283
$169 \rightarrow 175$	0.11755
$170 \rightarrow 173$	0.30511
$171 \rightarrow 174$	0.42105

Excited State 5: 4.8368 eV 256.34 nm f=0.0063

$165 \rightarrow 173$	-0.12231
$166 \rightarrow 176$	-0.10473
$167 \rightarrow 172$	0.38250

$167 \rightarrow 174$	-0.20036
$168 \rightarrow 172$	0.18484
$169 \rightarrow 173$	0.26510
$169 \rightarrow 175$	0.18028
$170 \rightarrow 176$	0.11663
$171 \rightarrow 177$	-0.22755

Excited State 6: 4.9063 eV 252.70 nm f=0.0146

$165 \rightarrow 172$	0.15488
$166 \rightarrow 172$	-0.21888
$167 \rightarrow 173$	-0.13483
$168 \rightarrow 173$	0.27210
$170 \rightarrow 174$	-0.26404
$171 \rightarrow 175$	0.35658
$171 \rightarrow 176$	-0.15935

Excited State 7: 5.0206 eV 246.95 nm f=0.0002

$163 \rightarrow 172$	0.24811
$163 \rightarrow 173$	0.26992
$163 \rightarrow 174$	0.18371
$163 \rightarrow 175$	-0.12850
$164 \rightarrow 172$	0.26628
$164 \rightarrow 173$	0.31200
$164 \rightarrow 174$	0.19416
$164 \rightarrow 175$	-0.14848
$164 \rightarrow 178$	-0.10035

Excited State 8: 5.0206 eV 246.95 nm f=0.0002

$163 \rightarrow 172$	-0.26393
$163 \rightarrow 173$	0.31398
$163 \rightarrow 174$	-0.19541
$163 \rightarrow 175$	-0.14948
$163 \rightarrow 178$	-0.10104
$164 \rightarrow 172$	0.24623
$164 \rightarrow 173$	-0.26775
$164 \rightarrow 174$	0.18226
$164 \rightarrow 175$	0.12178

Excited State 9: 5.1881 eV 238.98 nm f=0.0099

$165 \rightarrow 172$	-0.10611
$166 \rightarrow 172$	-0.15102
$166 \rightarrow 174$	-0.13252
$168 \rightarrow 173$	0.30399
$170 \rightarrow 172$	-0.29345
$170 \rightarrow 174$	0.22119
$171 \rightarrow 173$	0.35160
$171 \rightarrow 176$	0.14528

Excited State 10: 5.3114 eV 233.43 nm f=0.0412

$162 \rightarrow 173$	-0.11115
$165 \rightarrow 172$	0.22973
$165 \rightarrow 174$	-0.15007
$166 \rightarrow 172$	0.17480
$167 \rightarrow 173$	-0.13876
$168 \rightarrow 175$	0.18446
$169 \rightarrow 174$	-0.12715

$170 \rightarrow 172$	-0.18686
$170 \rightarrow 174$	0.31052
$170 \rightarrow 177$	0.17004
$171 \rightarrow 173$	0.10825
$171 \rightarrow 176$	-0.10837
$171 \rightarrow 178$	-0.23458

Excited State 11: 5.3571 eV 231.44 nm f=0.1375

$166 \rightarrow 173$	-0.23800
$167 \rightarrow 172$	-0.11730
$168 \rightarrow 172$	0.36364
$169 \rightarrow 173$	-0.11969
$170 \rightarrow 175$	0.19337
$171 \rightarrow 172$	0.10796
$171 \rightarrow 174$	0.40521

Excited State 12: 5.5830 eV 222.07 nm f=0.0156

$162 \rightarrow 172$	0.23843
$166 \rightarrow 173$	-0.24544
$167 \rightarrow 172$	-0.15390
$167 \rightarrow 174$	0.10715
$168 \rightarrow 174$	0.28547
$169 \rightarrow 173$	0.11534
$169 \rightarrow 175$	0.15832
$169 \rightarrow 176$	0.11889
$169 \rightarrow 178$	-0.17911
$170 \rightarrow 175$	0.28519
$171 \rightarrow 179$	-0.19236

Excited State 13: 5.6348 eV 220.03 nm f=0.2995

$166 \rightarrow 176$	0.11280
$168 \rightarrow 172$	0.13064
$168 \rightarrow 174$	-0.14675
$169 \rightarrow 173$	0.36773
$169 \rightarrow 175$	0.21238
$169 \rightarrow 176$	0.10385
$170 \rightarrow 175$	-0.12805
$170 \rightarrow 176$	-0.16401
$170 \rightarrow 178$	-0.12210
$171 \rightarrow 177$	0.36822

Excited State 14: 5.6823 eV 218.20 nm f=0.2135

$162 \rightarrow 173$	-0.10619
$166 \rightarrow 172$	0.20604
$168 \rightarrow 173$	-0.10049
$168 \rightarrow 178$	-0.16482
$169 \rightarrow 172$	-0.26429
$170 \rightarrow 177$	-0.20238
$171 \rightarrow 175$	0.30733
$171 \rightarrow 176$	0.36373
$171 \rightarrow 178$	-0.13257

Excited State	15: 5.7909 eV	214.10 nm	f=0.0002
$162 \rightarrow 172$	3 -0.10906		
$165 \rightarrow 172$	-0.25139		
$166 \rightarrow 172$	2 0.17481		
$167 \rightarrow 172$	3 0.29699		
$169 \rightarrow 172$	0.11699		
$169 \rightarrow 174$	4 0.21384		
$169 \rightarrow 17^{\circ}$	7 -0.10224		

$170 \rightarrow 172$	-0.10353
$170 \rightarrow 177$	0.11353
$171 \rightarrow 173$	0.10446
$171 \rightarrow 175$	0.23056
$171 \rightarrow 176$	-0.26419
$171 \rightarrow 178$	-0.11497

Excited State 16: 5.9380 eV 208.80 nm f=0.6425

$162 \rightarrow 172$	0.18128
$166 \rightarrow 173$	-0.15492
$167 \rightarrow 172$	0.24339
$167 \rightarrow 174$	-0.22719
$167 \rightarrow 177$	0.14346
$168 \rightarrow 174$	0.14104
$169 \rightarrow 173$	-0.16519
$169 \rightarrow 175$	-0.10397
$169 \rightarrow 176$	-0.23892
$170 \rightarrow 176$	-0.22873
$171 \rightarrow 177$	0.26558
$171 \rightarrow 179$	-0.12871

Excited State 17: 5.9606 eV 208.01 nm f=0.0360

$161 \rightarrow 172$	-0.14908
$162 \rightarrow 173$	-0.24385
$166 \rightarrow 172$	0.24364
$167 \rightarrow 173$	-0.12573
$167 \rightarrow 176$	-0.17043
$168 \rightarrow 178$	0.11648
$169 \rightarrow 174$	-0.20718
$169 \rightarrow 177$	0.20362

$170 \rightarrow 172$	-0.14263
$170 \rightarrow 174$	-0.10559
$171 \rightarrow 173$	0.13587
$171 \rightarrow 178$	0.28335
$171 \rightarrow 180$	0.11321

Excited State 18: 6.0376 eV 205.35 nm f=0.0014

$162 \rightarrow 172$	0.10412
$166 \rightarrow 173$	-0.16603
$168 \rightarrow 172$	0.14153
$168 \rightarrow 174$	-0.19534
$169 \rightarrow 175$	-0.11097
$169 \rightarrow 178$	0.11934
$170 \rightarrow 173$	0.40876
$171 \rightarrow 172$	-0.35443
$171 \rightarrow 174$	-0.13144

Excited State 19: 6.0876 eV 203.67 nm f=0.0096

$161 \rightarrow 172$	0.13922
$165 \rightarrow 172$	0.20596
$165 \rightarrow 174$	-0.17738
$166 \rightarrow 172$	0.11602
$166 \rightarrow 174$	-0.15715
$167 \rightarrow 175$	-0.11199
$167 \rightarrow 176$	0.17148
$168 \rightarrow 175$	-0.21383
$169 \rightarrow 172$	0.19310
$169 \rightarrow 174$	0.13170
$169 \rightarrow 177$	-0.18170
$170 \rightarrow 177$	-0.16368

$170 \rightarrow 179$	-0.17845
$171 \rightarrow 173$	0.13270
$171 \rightarrow 178$	0.22575

Excited State 20: 6.0963 eV 203.38 nm f=0.0206

$161 \rightarrow 173$	0.18454
$162 \rightarrow 172$	0.21351
$165 \rightarrow 173$	-0.18612
$167 \rightarrow 172$	0.14221
$167 \rightarrow 174$	0.18968
$167 \rightarrow 177$	-0.21051
$169 \rightarrow 175$	-0.26742
$169 \rightarrow 176$	0.27559
$169 \rightarrow 178$	0.16998

Table S3. TD-DFT results for 10b in chloroform.

Excitation energies and oscillator strengths:

Excited State 1:	Singlet-A	3.3333 eV	371.96 nm	f=4.7425
136→142	-0.13627	7		
138→141	0.35574			
139→140	0.57690			

Excited State 2:	Singlet-A	3.6286 eV	341.69 nm	f=0.1848
136→141	0.13330			
138→140	0.46108			
139→141	0.48893			

Excited State 3: Singlet-A 4.3650 eV 284.04 nm f=0.0590

135→141	-0.16767
135→143	0.11944
137→140	0.51112
137→142	0.31476
139→145	-0.15503
139→146	-0.10777

Excited State 4: Singlet-A 4.4203 eV 280.49 nm f=0.1393

135→140 -0.	17526
-------------	-------

136→140 -0.30675

137→141	0.14346
137→143	-0.13131
138→141	-0.29414
138→145	-0.10559
139→140	0.10402
139→142	0.40067
139→144	0.12385

Excited State 5: Singlet-A 4.7492 eV 261.06 nm f=0.0004

133→141	0.13635
135→140	0.36359
135→142	0.16399
136→140	-0.24615
137→141	-0.27174
137→143	0.13815
138→141	-0.14668
138→145	0.11808
139→142	0.11777
139→144	-0.21239

Excited State 6: Singlet-A 4.8915 eV 253.47 nm f=0.0074

133→140 0.17590

134→140	-0.20060
135→141	0.17338
136→141	0.28076
137→142	0.10332
137→144	0.10470
138→140	0.10542
138→142	-0.20377
139→141	-0.13503
139→143	0.30434
139→145	0.20884

Excited State 7: Singlet-A 4.9846 eV 248.73 nm f=0.0001

131→140	-0.36374
131→141	0.40155
131→142	0.26029
131→143	0.21710
131→144	-0.13790
131→146	0.11627
131→147	-0.12390
131→148	0.10825

132→140	0.36368
132→141	0.40160
132→142	-0.26029
132→143	0.21710
132→144	0.13791
132→146	0.11628
132→147	0.12390
132→148	0.10825

Excited State 9:	Singlet-A	5.0646 eV	244.81 nm	f=0.0372
133→140	0.12207			
134→142	-0.12549)		
136→141	-0.25462	2		
137→140	0.11762			
138→140	-0.34328	3		
138→142	-0.23167	7		
139→141	0.35450			
139→145	0.17775			

Excited State 10: Singlet-A 5.2807 eV 234.79 nm f=0.0110

133→140 0.19645

133→142 0.11669

134→140	0.17626
136→141	-0.12859
136→143	-0.13412
138→140	0.16494
138→142	0.31092
138→144	-0.22795
139→141	-0.11185
139→143	-0.21524
139→145	0.20526
139→146	-0.17475

Excited State 11: Singlet-A 5.3123 eV 233.39 nm f=0.3229

134→141	-0.22100
135→140	0.14364
136→140	0.32239
137→141	-0.20914
138→143	-0.13799
138→145	-0.11489
139→142	0.39900
139→144	0.16563

Excited State 12: Singlet-A 5.4887 eV 225.89 nm f=0.1821

136→140	-0.17203
136→142	-0.12911
137→141	-0.28581
137→143	0.13535
138→143	0.26247
138→145	-0.18618
138→146	0.10240
139→142	-0.14791
139→144	0.39784

Excited State 13:	Singlet-A	5.6015 eV	221.34 nm	f=0.0533
Excited State 15.	Singlet-A	5.0015 CV	221.J7 IIII	1 0.0555

130→140	-0.16355
133→143	-0.12122
134→141	-0.23685
135→140	0.22634
135→142	0.13140
136→142	-0.17613
137→141	0.24969
137→143	-0.22871
137→146	0.20854
138→143	0.23575
139→147	0.16342

Excited State 14: Singlet-A 5.6155 eV 220.79 nm f=0.1101

130→141	-0.12021
133→140	-0.13205
134→140	-0.23633
135→141	-0.11899
136→141	0.17283
136→146	-0.15220
137→140	0.23653
138→144	-0.21095
139→143	-0.27518
139→145	0.29604
139→146	0.18356

Excited State 15: Singlet-A 5.7052 eV 217.32 nm f=0.0031

133→140	0.23934
134→140	-0.21578
135→141	0.29443
137→142	0.21156
137→144	0.11987
139→141	0.10045
139→143	-0.26063

139→145	-0.25990

139→146 0.10998

Excited State 16: Singlet-A 5.8699 eV 211.22 nm f=0.0508

134→141	0.20315
135→140	0.12630
135→142	0.11125
136→140	-0.18019
136→142	-0.11095
137→143	-0.10035
137→145	0.12175
137→146	0.10200
138→141	0.41371
139→140	-0.30710
139→142	0.10134
139→144	0.11542

Excited State 17: Singlet-A 5.9217 eV 209.37 nm f=0.1068

130→141	0.15889
134→140	0.24320
135→141	0.10402
136→141	-0.11191
136→143	0.15383
---------	----------
136→146	-0.12556
137→140	0.13603
137→142	0.10301
137→144	0.11048
138→140	0.16209
138→142	-0.13483
139→141	-0.15995
139→146	0.39524

Excited State 18: Singlet-A 5.9750 eV 207.51 nm f=0.1586

130→140	0.18602
134→141	0.11052
135→140	0.22028
135→142	0.21113
135→144	0.10182
136→140	0.14178
136→142	0.25641
137→141	0.19699
137→145	0.13479
138→141	-0.14955
138→145	-0.20401

139→140	0.15652
139→144	0.16609
139→147	-0.19135

Excited State 19: Singlet-A 6.0813 eV 203.88 nm f=0.0557

130→141	0.10540
133→140	-0.23049
133→142	-0.19672
135→145	0.24198
136→143	-0.13213
137→140	-0.21186
137→142	0.27246
137→144	0.30491
138→144	-0.15073
138→147	-0.10478

Excited State 20: Singlet-A 6.1238 eV 202.46 nm f=0.2043

127→141	0.12851
130→140	-0.20451
133→141	-0.22150
134→141	-0.10516
135→140	-0.14453

135→142	0.16808
135→144	0.25851
137→141	-0.11049
137→143	0.12861
137→145	0.42303

Table S4. TD-DFT results for 21a in chloroform.

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 3.4642 eV 357.90 nm f=2.8925

125→128	0.11195
126→128	0.16253
126→129	-0.11183
127→128	0.64639

Excited State 2: Singlet-A 4.3907 eV 282.38 nm f=0.0353

124→128	-0.18887
125→128	0.12178
125→130	0.13628
126→128	-0.37766
126→129	-0.21591
127→129	0.38332
127→131	-0.14798

Excited State 3: Singlet-A 4.4909 eV 276.08 nm f=0.0983

123→128 -0.10149

124→128 -0.10400

125→128 0.43354

125→129	0.32787
126→132	0.11301
127→129	-0.28977
127→130	-0.10938

122→128	0.21401
124→128	0.29176
124→129	0.15434
125→129	0.14116
125→132	0.10686
126→129	-0.25939
126→130	0.19616
127→130	-0.13696
127→131	0.28287

- Excited State 5: Singlet-A 4.9886 eV 248.53 nm f=0.0002
 - 121→128 0.54072

127→132 -0.13189

121→129 -0.28354

121→130	-0.23934
121→133	-0.12925
121→134	0.11620
121→135	-0.10015

Excited State 6: Singlet-A 5.0563 eV 245.21 nm f=0.1959

123→128	0.26692
124→129	0.18754
124→130	-0.10399
125→129	0.20163
125→130	-0.14327
125→131	0.12269
126→128	-0.21979
126→129	0.14782
126→132	0.12973
126→133	0.11472
127→130	0.32122
127→132	-0.12409

Excited State 7: Singlet-A 5.2676 eV 235.37 nm f=0.1835

123→128	-0.16888
123→129	0.12252
124→128	0.14725
124→129	0.11522
126→128	0.34266
126→130	0.13567
126→133	0.10639
127→128	-0.10742
127→129	0.37870
127→131	-0.19326

Excited State 8: Singlet-A 5.4258 eV 228.51 nm f=0.1345

- 122→129 0.12539
- 125→128 0.20555
- 125→129 0.10356
- 125→130 0.16820
- 126→129 0.21904
- 126→130 0.10165
- 127→129 0.16009
- 127→130 0.26724

127→133 0.12932

Excited State 9: Singlet-A 5.5927 eV 221.69 nm f=0.1212

120→128	0.14475
122→130	-0.10300
123→128	0.26238
124→129	-0.15179
125→128	-0.24220
125→129	0.15712
125→130	-0.12545
125→132	-0.13617
126→128	0.13513
126→130	0.18720
126→133	-0.13675
127→130	-0.13439
127→131	-0.18461
127→133	0.24556

Excited State 10: Singlet-A 5.7583 eV 215.31 nm f=0.0774

122→128	0.30818
122→129	0.15097
124→128	0.24645
124→130	0.12783
125→129	0.16182
126→128	-0.10424
126→130	-0.18511
126→132	-0.15392
127→130	0.17942
127→131	-0.25435
127→132	0.21819

Excited State 11: Singlet-A 5.8244 eV 212.87 nm f=0.6192

122→128	0.12791
123→128	0.14003
123→129	0.14214
124→128	0.10094
124→129	0.11041
124→131	-0.14467
125→129	-0.13813

125→130	0.24385
125→132	0.16432
125→133	-0.20671
126→129	0.20950
126→130	-0.21078
127→130	-0.22855
127→131	-0.10485
127→132	-0.13216
127→134	0.11051

Excited State 12: Singlet-A 6.0049 eV 206.47 nm f=0.1472

120→128	0.23485
123→128	0.26345
124→128	0.10432
124→129	0.20436
124→132	0.14057
125→128	0.17826
126→131	-0.13874
126→132	-0.24921
126→134	0.10283

127→132 0.26901

Excited State 13: Singlet-A 6.0800 eV 203.92 nm f=0.0080

- 120→128 -0.18292
- 123→128 -0.19117
- 124→129 0.23777
- 124→131 -0.19356
- 125→130 -0.12164
- 125→131 0.22830
- 125→132 -0.12121
- 126→128 -0.14681
- 126→130 0.12168
- 126→131 -0.22313
- 126→133 -0.14780
- 127→133 0.21919

Excited State 14: Singlet-A 6.1644 eV 201.13 nm f=0.7027

- 123→129 -0.14577

125→128	-0.19048
125→129	0.13014
125→130	0.18561
125→132	0.36566
126→132	-0.23230
127→129	-0.10663
127→130	0.13648
127→132	-0.12417
127→133	0.17172
127→134	-0.10658

Excited State 15: Singlet-A 6.2798 eV 197.43 nm f=0.2607

120→128	-0.18577
123→129	0.26025
124→128	-0.14273
125→128	-0.15265
125→129	0.18490
125→130	-0.14447
125→131	0.11164
125→133	-0.16746

126→128	0.13085
126→129	-0.15893
126→130	-0.12102
126→132	-0.13951
127→131	0.13921
127→132	0.17658
127→134	0.14696

Excited State 16:	Singlet-A	6.3425 eV	195.48 nm	f=0.0539
122→128	-0.20586			
122→129	-0.24875			
123→130	-0.10983			
124→128	0.19048			
124→129	0.13256			
124→131	0.15626			
125→129	0.10767			
125→130	0.12586			
125→131	-0.19268			
125→132	-0.10850			
125→133	-0.13480			
			~	

126→131	0.12533
126→132	-0.11537
127→133	0.26063

Excited State 17: Singlet-A 6.4975eV 190.82nm f=0.0485

120→131	-0.10627
124→132	0.11632
125→129	0.18263
125→130	-0.12270
125→131	-0.21222
125→132	0.13089
125→133	0.18310
126→128	-0.11030
126→129	0.33891
126→131	-0.18234
127→128	0.13748
127→130	-0.18636
127→133	-0.11621

Excited State 18: Singlet-A 6.6286 eV 187.04 nm f=0.0015

116→128	0.20713
119→128	0.39701
119→129	-0.16480
119→130	-0.11876
120→128	0.20644
123→128	-0.18081
123→129	-0.12372
125→133	-0.11056
127→134	0.14371

Excited State 19:	Singlet-A	6.6918 eV	185.28 nm	f=0.0685
116→128	-0.16273			
118→128	-0.13030			
119→128	0.43928			
119→129	-0.19131			
119→130	-0.14387			
120→128	-0.16799			
123→128	0.12866			
123→129	0.14770			
125→133	0.12261			

Excited State 20: Singlet-A 6.7482 eV 183.73 nm f=0.0036

116→128	0.12105
120→129	-0.11484
122→129	0.26123
124→128	-0.20034
124→129	0.26336
124→131	0.10466
125→129	-0.12780
125→130	-0.15755
125→132	0.12315
125→134	-0.14487
126→131	0.27246
126→132	-0.11454
126→133	-0.12608

127→133 0.10904

Table S5. TD-DFT results for 22 (isomer A) in chloroform.

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 4.4024 eV 281.63 nm f=1.3452

 $112 \rightarrow 117 \quad 0.12192$

 $115 \rightarrow 116 \quad 0.66773$

Excited State 2: Singlet-A 4.6410 eV 267.15 nm f=0.0314

- 113→117 -0.13420
- $114 \rightarrow 116 \quad 0.58331$
- 115 →117 -0.21964
- 115 →118 -0.22345

Excited State 3: Singlet-A 5.1524 eV 240.63 nm f=0.0493

- 112→116 0.27299
- 112→119 0.15416
- 113→117 -0.14184
- 113→120 -0.11538
- 115→117 0.47228
- 115→118 -0.22921
- 115→120 -0.10476

Excited State 4: Singlet-A 5.1887 eV 238.95 nm f=0.1347 <S**2>=0.000

111→117	0.12867
112→118	0.20877
113→116	0.44781
114→117	-0.23271
114→120	-0.11803
115→116	0.11596

115→119 -0.35314

Excited State 5: Singlet-A 5.8148 eV 213.22 nm f=0.0202 <s**2>=0.00</s**2>
--

- 110→117 -0.10237
- 111→116 0.32459
- 112→116 0.34470
- 112→119 0.16799
- 113→117 0.11052
- 113→118 -0.20538
- 114→119 -0.18049
- 115→117 0.11191
- 115→120 0.32537

Excited State 6: Singlet-A 5.8436 eV 212.17 nm f=1.3427

111→117	0.14007
113→119	0.10547
114→117	0.53907
114→118	0.30053
114→120	-0.15552
115→119	-0.14770

Excited State 7:	Singlet-A	5.8495 eV	211.96 nm	f=0.4722
111→116	0.10680			

- 112→116 -0.11283
- 112→119 -0.10750
- 113→118 0.10121
- 114→116 0.34267
- 114→119 0.14622
- 115→117 0.33976
- 115→118 0.40601
- 115→120 -0.12868

Excited State 8: Singlet-A 6.0807 eV 203.90 nm f=0.4708

112→118	-0.14876

- 113→116 0.30527
- 113→119 0.21760
- 114→117 -0.10559
- 114→118 0.37398
- 115→119 0.38044
- 115→121 -0.11593

Excited State 9:	Singlet-A	6.3174 eV	196.26 nm	f=0.1394
111→116	0.36203			
112→116	-0.30336			
112→119	0.12616			
113→117	0.21627			
115→117	0.21463			
115→118	-0.35875			

Ewaited State 10:	Singlet A	62525 N	105 14 mm	£_0.0701
Exclicu State 10.	Singlet-A	0.5555560	195.14 1111	1-0.0701

- 110→116 0.12177
- 111→117 0.10663
- 112→117 -0.13287

- 113→116 0.32315
- 113→119 -0.26366
- 114→117 0.18066
- 114→118 -0.29231
- 114→120 -0.14512
- 115→119 0.30320
- 115→121 0.10826

Excited State 11: Singlet-A 6.5262 eV 189.98 nm f=0.0003

- 111→116 0.16932 112→116 0.37999
- 113→117 0.10913
- 113→118 0.24376
- 114→119 0.41948
- 115→120 -0.14874

Excited State 12: Singlet-A 6.7425 eV 183.89 nm f=0.0955

111→116 -0.14124

112→116 -0.11480

112→121	-0.11424
113→117	-0.11033
113→118	0.14680
114→119	0.33240
115→117	0.13412
115→120	0.50714

Excited State 13: Singlet-A 6.7705 eV 183.12 nm f=0.0444

- 110→116 -0.24437
- 111→118 -0.20525
- 112→117 0.33272
- 113→116 0.18335
- 114→117 0.24913
- 114→118 -0.27158
- 114→120 0.14200
- 115→121 -0.20355

Excited State 14: Singlet-A 7.0452 eV 175.98 nm f=0.0290

- 111→116 0.27906
- 113→117 0.52163

113→118	0.17899
113→120	-0.14758

- 114→119 -0.12843
- 114→121 0.12078
- Excited State 15: Singlet-A 7.0802 eV 175.11 nm f=0.1226
 - 111→117 -0.12543
 - 112→117 0.41864
 - 112→118 0.13154
 - 112→120 -0.14208
 - 113→119 -0.15521
 - 114→120 -0.41365
 - 115→121 -0.12931
- Excited State 16: Singlet-A 7.2074 eV 172.02 nm f=0.0151
 - $108 \rightarrow 116$ -0.19165 $110 \rightarrow 116$ 0.42877 $111 \rightarrow 117$ -0.25161
 - 113→121 0.14859
 - 114→120 0.13695

115→119 -().11297
------------	---------

115→121 -0.30091

Excited State17: Singlet-A 7.3653 eV 168.34 nm f=0.1189

- 110→118 0.16069
- 111→119 0.42509
- 113→117 0.18594
- 113→120 -0.26292
- 114→119 0.22800
- 114→121 -0.15663

Excited State18: Singlet-A 7.4126 eV 167.26 nm f=0.0315

- 110→119 0.10248
- 111→118 0.23107
- 111→120 0.14034
- 112→117 0.22621
- 112→118 0.22606
- 112→120 -0.17424
- 113→119 -0.14987

114→118 0.1

- 114→120 0.43393
- 115→121 0.14854
- Excited State 19: Singlet-A 7.4365 eV 166.72 nm f=0.0861
 - 110→116 0.24281
 - 110→119 0.11904
 - 111→117 0.34145
 - 111→118 -0.16497
 - 112→118 0.28770
 - 113→116 -0.10841
 - 113→119 0.25631
 - 113→121 -0.13100
 - 114→118 -0.18156
 - 115→119 0.16416
- Excited State 20: Singlet-A 7.4651 eV 166.09 nm f=0.0098
 - 110→118 0.18945
 - 111→116 0.21303
 - 111→119 -0.14453

112→119	0.23583
112 117	0.25505

- 113→118 0.31095
- 113→120 -0.21648
- 114→119 -0.19999
- 114→121 -0.27629
- 115→118 0.14850
- 115→120 0.14251

Table S6. TD-DFT results for 22 (isomer B) in chloroform.

Excitation energies and oscillator strengths:

Excited State 1: Singlet-A 4.4024 eV 281.63 nm f=1.3422

112→117 -0.12202

115→116 0.66772

Excited State 2: Singlet-A 4.6409 eV 267.15 nm f=0.0315

115→117 -0.21941

115→118 -0.22349

Excited State 3: Singlet-A 5.1525 eV 240.63 nm f=0.0509

- 111→116 -0.19794
- 112→116 -0.27309
- 112→119 -0.15412
- 113→117 0.14187
- 113→120 0.11536
- 115→117 0.47236
- 115→118 -0.22891
- 115→120 -0.10483

Excited State 4: Singlet-A 5.1888 eV 238.95 nm f=0.1343

111→117	-0.12868
112→118	0.20866
113→116	0.44796
114→117	0.23280
114→120	0.11800
115→116	-0.11605
115→119	0.35292

Excited State 5: Singlet	-A 5.8148 eV	213.22 nm	f=0.0227
--------------------------	--------------	-----------	----------

110→117	0.10238
111→116	-0.32446
112→116	0.34507
112→119	-0.16756
113→117	0.11055
113→118	-0.20566
114→119	0.18083
115→117	-0.11077

115→120 -0.32571

Excited State 6: Singlet-A 5.8435 eV 212.1 8 nm f=1.3410

111→117	0.14014
113→119	-0.10542
114→117	0.53894
114→118	0.30074
114→120	-0.15552
115→119	-0.14760

	Excited State 7:	Singlet-A	5.8496 eV	211.95 nm	f=0.4734
--	------------------	-----------	-----------	-----------	----------

111→116	0.10808
112→116	0.11166
112→119	0.10803
113→118	-0.10051
114→116	0.34258
114→119	0.14565
115→117	0.34009
115→118	0.40632
115→120	-0.12752

Excited State 8: Singlet-A 6.0810 eV 203.89 nm f=0.4698

112→118	0.14874
113→116	-0.30490
113→119	-0.21780
114→117	-0.10575
114→118	0.37410
115→119	0.38033
115→121	-0.11611

Excited State 9: Singlet-A 6.3177 eV 196.25 nm f=0.1406

111→116	0.36164
112→116	0.30382
112→119	-0.12626
113→117	-0.21599
115→117	0.21478
115→118	-0.35880

Excited State 10: Singlet-A 6.3539 eV 195.13 nm f=0.0693

- 110→116 -0.12152
- 111→117 0.10650
- 112→117 -0.13263

112→120	-0.10799
113→116	0.32344
113→119	-0.26354
114→117	-0.18069
114→118	0.29211
114→120	0.14498
115→119	-0.30348
115→121	-0.10807

Excited State 11: Singlet-A 6.5263 eV 189.98 nm f=0.0023

111→116	0.16959
112→116	-0.37959
113→117	-0.10919
113→118	-0.24391
114→119	0.41945
115→120	-0.14891

Excited State 12: Singlet-A 6.7426eV 183.88nm f=0.0999

112→116 0.11467

112→121	0.11429
113→117	0.11037
113→118	-0.14686
114→119	0.33235
115→117	0.13412
115→120	0.50714

Excited State 13 :Singlet-A 6.7705 eV 183.12 nm f=0.0405

110→116	0.24437
111→118	0.20527
112→117	0.33267
113→116	0.18322
114→117	-0.24925
114→118	0.27135
114→120	-0.14215

115→121 0.20349

Excited State 14: Singlet-A 7.0451 eV 175.99 nm f=0.0294

- 111→116 0.27906
- 113→117 0.52162

113→118	0.17909
113→120	-0.14753
114→119	0.12841
114→121	-0.12100

Excited State 15: Singlet-A 7.0801 eV 175.12nm f=0.1206

111→117	0.12558
112→117	0.41862
112→118	0.13156
112→120	-0.14203
113→119	-0.15520
114→120	0.41357
115→121	0.12965

Excited State 16: Singlet-A 7.2074 eV 172.02nm f=0.0146

108→116	-0.19211
110→116	0.42848
111→117	-0.25144
113→121	-0.14870
114→120	0.13735

115→121 -0.30092

Excited State 17: Singlet-A 7.3655 eV 168.33n mf=0.1209

110→118	0.16047
111→119	0.42499
113→117	-0.18592
113→118	0.24599
113→120	0.26309
114→119	0.22801
114→121	-0.15704

ExcitedState18: Singlet-A 7.4127 eV 167.26 nm f=0.0309

110→119	0.10287
111→118	0.23022
111→120	0.13996
112→117	-0.22641
112→118	-0.22756
112→120	0.17449
113→119	0.14864

- 114→120 0.43396
- 115→121 0.14846

Excited State 19: Singlet-A 7.4367 eV 166.72 nm f=0.0844

110→116	0.24228
110→119	0.11843
111→117	0.34266
111→118	-0.16589
112→118	-0.28686
113→116	0.10882
113→119	-0.25725
113→121	0.13167
114→118	-0.18244
115→119	0.16427

Excited State 20: Singlet-A 7.4652 eV 166.08 nm f=0.0100

- 110→118 -0.18904
- 111→116 -0.21296
- 111→119 0.14468

112→119	0.23517
113→118	0.31115
113→120	-0.21660
114→119	0.20020
114→121	0.27657
115→118	-0.14826
115→120	-0.14248
Table S7. Cartesian coordinates of isomer A of 9a by TD-DFT calculations

С	1.37895	-2.23886	-0.50485
С	2.77803	-1.86050	-0.53161
С	0.69103	-1.02703	-0.60193
С	0.69104	-3.45785	-0.40724
С	-0.69113	-3.45782	-0.40725
С	-0.69105	-1.02701	-0.60195
С	-1.37901	-2.23882	-0.50489
Н	1.24100	-4.38790	-0.33165
Н	-1.24113	-4.38786	-0.33168
С	-2.77807	-1.86042	-0.53168
С	2.79048	-0.46691	-0.64282
С	3.99339	-2.53956	-0.48813
С	5.16803	-1.80772	-0.53717
С	3.94774	0.28113	-0.70416
С	5.16735	-0.40065	-0.62769
Н	4.02396	-3.62092	-0.42738
Н	6.11065	-2.33791	-0.53856
0	1.52132	0.04732	-0.68651
Н	3.90975	1.35998	-0.79438
С	6.39885	0.40222	-0.68487
С	-3.99345	-2.53944	-0.48821
С	-2.79047	-0.46682	-0.64288
С	-3.94772	0.28126	-0.70425
С	-5.16807	-1.80756	-0.53728
С	-5.16734	-0.40049	-0.62782
0	-1.52130	0.04737	-0.68655
Н	-3.90969	1.36010	-0.79447
Н	-4.02405	-3.62080	-0.42745
Н	-6.11072	-2.33771	-0.53866

Table S7. continued.

С	-6.39884	0.40238	-0.68502
С	7.56254	0.22778	-0.02449
С	7.82752	-0.88615	0.95570
С	-7.56251	0.22789	-0.02463
С	-7.82740	-0.88607	0.95554
Н	8.32156	-0.47085	1.84102
Н	6.87965	-1.30044	1.30685
С	8.69709	-2.01497	0.38532
Н	-6.87949	-1.30031	1.30665
Н	-8.32145	-0.47082	1.84089
С	-8.69691	-2.01494	0.38517
Н	8.25340	-2.38607	-0.54630
Н	9.68155	-1.62219	0.10877
С	8.86532	-3.17286	1.36515
С	9.73850	-4.29405	0.80971
Н	9.29896	-2.79472	2.29835
Н	7.87638	-3.56934	1.62459
Н	-9.68136	-1.62220	0.10853
Н	-8.25314	-2.38607	-0.54641
С	-8.86518	-3.17279	1.36504
Н	-7.87624	-3.56921	1.62460
Н	-9.29892	-2.79462	2.29818
С	-9.73825	-4.29404	0.80958
С	8.61564	1.21264	-0.26685
Н	6.32163	1.28525	-1.31611
С	9.82038	1.26086	0.32770
Н	8.38320	1.98050	-1.00267
Н	10.10685	0.51961	1.06825
С	10.79044	2.28844	0.02077
С	12.00057	2.38150	0.58803

Table S7. continued.

Н	10.51571	3.03529	-0.72140
Н	12.34121	1.67354	1.33517
С	12.92358	3.46590	0.21208
0	14.07164	3.37908	0.89946
0	12.70402	4.33235	-0.60288
С	15.04738	4.38448	0.61723
Н	15.34315	4.34760	-0.43243
Н	14.65272	5.37612	0.84417
Н	15.89610	4.15862	1.25812
С	-8.61566	1.21270	-0.26695
Н	-6.32164	1.28539	-1.31629
С	-9.82037	1.26089	0.32766
Н	-8.38331	1.98056	-1.00281
Н	-10.10676	0.51965	1.06826
С	-10.79050	2.28842	0.02075
С	-12.00060	2.38144	0.58808
Н	-10.51585	3.03524	-0.72147
Н	-12.34116	1.67349	1.33527
С	-12.92368	3.46577	0.21214
0	-14.07170	3.37893	0.89959
0	-12.70422	4.33221	-0.60286
С	-15.04750	4.38426	0.61737
Н	-14.65289	5.37593	0.84426
Н	-15.34334	4.34732	-0.43227
Н	-15.89618	4.15838	1.25832
Н	-10.74167	-3.92779	0.57230
Н	-9.30925	-4.70532	-0.10931
Н	-9.84102	-5.11220	1.52669
Н	9.30960	-4.70530	-0.10924
Н	10.74192	-3.92774	0.57255

Table S7. continued.

Н 9.84123 -5.11224 1.52679

Table S8. Cartesian coordinates of isomer B of 9a by TD-DFT calculations

С	-1.37351	-2.18606	-0.12129
С	-2.76723	-1.80709	-0.24318
С	-0.68835	-0.97021	-0.06116
С	-0.68838	-3.40899	-0.06078
С	0.68839	-3.40898	0.06080
С	0.68835	-0.97021	0.06123
С	1.37352	-2.18605	0.12134
Н	-1.23620	-4.34211	-0.10921
Н	1.23622	-4.34210	0.10921
С	2.76723	-1.80708	0.24323
С	-2.77995	-0.40909	-0.24567
С	-3.97635	-2.48783	-0.36399
С	-5.14707	-1.75502	-0.46424
С	-3.93239	0.34083	-0.35462
С	-5.14894	-0.34501	-0.44505
Н	-4.00427	-3.57065	-0.39037
Н	-6.08073	-2.28475	-0.59488
0	-1.51574	0.10730	-0.13445
Н	-3.89457	1.42342	-0.35777
С	-6.37410	0.46137	-0.55710
С	3.97636	-2.48781	0.36401
С	2.77995	-0.40907	0.24573
С	3.93238	0.34085	0.35468
С	5.14707	-1.75500	0.46425
С	5.14893	-0.34499	0.44508
0	1.51573	0.10731	0.13453
Н	3.89456	1.42344	0.35784
Н	4.00428	-3.57063	0.39037
Н	6.08073	-2.28472	0.59487

Table S8. continued.

С	6.37410	0.46139	0.55712
С	-7.60039	0.23204	-0.04266
С	-7.96210	-0.96362	0.80071
С	7.60039	0.23205	0.04267
С	7.96208	-0.96363	-0.80068
Н	-7.05555	-1.40704	1.21900
Н	-8.55613	-0.62790	1.65783
С	-8.75127	-2.03768	0.03967
Н	7.05553	-1.40706	-1.21894
Н	8.55609	-0.62793	-1.65782
С	8.75127	-2.03766	-0.03962
Н	-9.69900	-1.61955	-0.31649
Н	-8.19926	-2.33041	-0.86147
С	-9.02564	-3.27329	0.89228
С	-9.81735	-4.34215	0.14482
Н	-8.07158	-3.69213	1.23410
Н	-9.57044	-2.97372	1.79524
Н	9.69900	-1.61953	0.31650
Н	8.19927	-2.33037	0.86154
С	9.02561	-3.27330	-0.89220
Н	8.07154	-3.69216	-1.23398
Н	9.57039	-2.97376	-1.79518
С	9.81735	-4.34214	-0.14473
С	-8.62873	1.23618	-0.31078
Н	-6.23714	1.39690	-1.09580
С	-9.89436	1.22939	0.14268
Н	-8.32210	2.06860	-0.94175
Н	-10.25672	0.42301	0.77395
С	-10.83388	2.27969	-0.18173
С	-12.10402	2.31821	0.24271

Table S8. continued.

Н	-10.48252	3.09194	-0.81484
Н	-12.52232	1.54397	0.87597
С	-12.98953	3.43039	-0.14214
0	-14.21107	3.27784	0.38952
0	-12.68509	4.36885	-0.84197
С	-15.15880	4.30260	0.08252
Н	-14.80688	5.27052	0.44284
Н	-15.32588	4.35979	-0.99424
Н	-16.07531	4.01820	0.59362
С	8.62873	1.23619	0.31075
Н	6.23715	1.39693	1.09580
С	9.89435	1.22940	-0.14271
Н	8.32211	2.06863	0.94171
Н	10.25671	0.42299	-0.77396
С	10.83388	2.27969	0.18167
С	12.10402	2.31820	-0.24279
Н	10.48253	3.09196	0.81475
Н	12.52232	1.54394	-0.87604
С	12.98954	3.43039	0.14203
0	14.21108	3.27781	-0.38963
0	12.68512	4.36885	0.84184
С	15.15882	4.30256	-0.08266
Н	14.80692	5.27048	-0.44301
Н	15.32588	4.35978	0.99411
Н	16.07533	4.01813	-0.59373
Н	10.78801	-3.95502	0.17968
Н	9.27835	-4.67598	0.74721
Н	9.99877	-5.21722	-0.77363
Н	-10.78801	-3.95505	-0.17963
Н	-9.27834	-4.67603	-0.74710

Table S8. continued.

Н -9.99879 -5.21721 0.77375

Table S9. Cartesian coordinates of 10b by TD-DFT calculations

С	-1.37924	2.24994	-0.01693
С	-2.77722	1.87019	-0.03343
С	-0.69100	1.03418	-0.00811
С	-0.69083	3.47318	-0.00858
С	0.69084	3.47318	0.00861
С	0.69101	1.03418	0.00815
С	1.37925	2.24994	0.01697
Н	-1.24055	4.40642	-0.01527
Н	1.24055	4.40642	0.01530
С	2.77722	1.87019	0.03349
С	-2.78946	0.47355	-0.03215
С	-3.99507	2.55187	-0.05094
С	-5.16732	1.82057	-0.06392
С	-3.94807	-0.27718	-0.04481
С	-5.16599	0.40895	-0.05844
Н	-4.02381	3.63493	-0.05627
Н	-6.10999	2.35317	-0.08259
0	-1.52127	-0.04307	-0.01705
Н	-3.91001	-1.35970	-0.04210
С	-6.40002	-0.38160	-0.06668
C	3.99507	2.55186	0.05105
С	2.78946	0.47355	0.03224

Table S9. continued.

С	3.94807	-0.27718	0.04495
С	5.16732	1.82056	0.06408
С	5.16599	0.40895	0.05861
0	1.52127	-0.04307	0.01712
Н	3.91001	-1.35971	0.04225
Н	4.02381	3.63493	0.05639
Н	6.10999	2.35316	0.08281
С	6.40002	-0.38160	0.06689
С	-7.65989	0.08010	-0.02581
Н	-7.86036	1.14729	0.02114
С	7.65988	0.08009	0.02575
Н	7.86034	1.14727	-0.02152
С	-8.81340	-0.79206	-0.03719
Н	-6.25631	-1.45969	-0.10604
С	-10.08601	-0.35796	0.00336
Н	-8.62320	-1.86317	-0.08128
Н	-10.28948	0.70981	0.04716
С	-11.21858	-1.25504	-0.00825
С	-12.49895	-0.86208	0.03053
Н	-11.01421	-2.32284	-0.05123
Н	-12.77863	0.18445	0.07401
С	-13.58746	-1.85468	0.01572

Table S9. continued.

0	-14.78522	-1.25404	0.06003
0	-13.44963	-3.05547	-0.02969
С	-15.92126	-2.12129	0.05215
Н	-15.93573	-2.72614	-0.85586
Н	-15.90671	-2.77969	0.92217
Н	-16.78977	-1.46815	0.08618
С	8.81340	-0.79205	0.03723
Н	6.25632	-1.45969	0.10653
С	10.08600	-0.35796	-0.00356
Н	8.62321	-1.86315	0.08160
Н	10.28946	0.70979	-0.04765
С	11.21858	-1.25503	0.00817
С	12.49894	-0.86208	-0.03080
Н	11.01421	-2.32282	0.05144
Н	12.77862	0.18444	-0.07456
С	13.58746	-1.85467	-0.01582
0	14.78521	-1.25405	-0.06037
0	13.44963	-3.05545	0.02990
С	15.92125	-2.12129	-0.05237
Н	15.93581	-2.72590	0.85580
Н	15.90662	-2.77993	-0.92221
Н	16.78976	-1.46816	-0.08666

Table S10. Cartesian coordinates of 21a by TD-DFT calculations

С	2.36078	-1.04842	-0.26418
С	0.98511	-1.05457	-0.13140
0	0.11546	-0.05819	-0.45188
С	-1.12658	-0.54278	-0.13918
С	-2.30953	0.14874	-0.30710
С	-3.49538	-0.49313	0.06248
С	-4.75412	0.23586	-0.11507
С	-5.99273	-0.19846	0.16675
С	-7.17179	0.60927	-0.05360
С	-8.42611	0.20208	0.21222
С	-9.58325	1.03451	-0.02325
С	-10.84753	0.66626	0.22450
С	-11.96327	1.58765	-0.05139
0	-13.13917	1.02600	0.26393
С	-14.29794	1.83087	0.03559
С	0.34739	-2.18521	0.38542
0	3.14443	-0.04542	-0.74374
С	4.42941	-0.51853	-0.67305
С	5.55340	0.18373	-1.06752
С	6.78598	-0.44984	-0.93261
С	8.05631	0.27815	-1.29264
С	-3.44141	-1.80307	0.58539

Table S10. continued.

С	-2.24525	-2.47650	0.74517
С	-1.05947	-1.83876	0.37745
С	1.08110	-3.31634	0.77382
С	2.45713	-3.30969	0.64131
С	3.09410	-2.17283	0.12117
С	4.47288	-1.81430	-0.15317
С	5.70983	-2.44293	-0.02042
С	6.84652	-1.75369	-0.41047
Н	3.04149	-4.17287	0.93583
Н	0.57130	-4.18439	1.17357
Н	5.47294	1.18757	-1.46784
Н	5.78189	-3.44936	0.37522
Н	-2.31422	1.15342	-0.71229
Н	-2.23137	-3.48198	1.14859
Н	7.81657	-2.23044	-0.31553
Н	-4.35886	-2.30194	0.87193
Н	-4.65067	1.23918	-0.52389
Н	-6.15505	-1.19191	0.57644
Н	-7.01779	1.60659	-0.46225
Н	-8.59479	-0.79207	0.62036
Н	-9.41258	2.02866	-0.43100
Н	-11.09382	-0.30852	0.63007

Table S10. continued.

0	-11.86317	2.70582	-0.50170
Н	-14.38322	2.08850	-1.02127
Н	-14.25056	2.74739	0.62582
Н	-15.14399	1.22302	0.34670
Н	8.78433	-0.43295	-1.69721
Н	7.85193	1.00727	-2.08338
С	8.67334	0.99984	-0.08819
Н	7.93975	1.70577	0.31928
Н	8.87183	0.26873	0.70467
С	9.96086	1.74125	-0.43612
Н	10.68822	1.03072	-0.84926
Н	9.75629	2.46921	-1.23154
С	10.58057	2.46049	0.75911
Н	9.85196	3.16912	1.17347
Н	10.78571	1.73201	1.55418
С	11.86827	3.20636	0.41601
Н	12.59468	2.49754	0.00113
Н	11.66151	3.93400	-0.37770
С	12.47987	3.92067	1.61802
Н	11.78293	4.65573	2.03247
Н	12.72340	3.20954	2.41347
Н	13.39874	4.44671	1.34664

Table S11. Cartesian coordinates of isomer A of 22 by TD-DFT calculations

0	1.47736	-0.21115	-0.36646
С	0.67066	0.86664	-0.16667
С	-0.67066	0.86664	0.16669
0	-1.47737	-0.21115	0.36648
С	-1.33924	2.08181	0.33275
С	1.33924	2.08181	-0.33274
С	2.71038	0.30505	-0.67131
С	3.83545	-0.44807	-0.95289
С	2.69864	1.70185	-0.66906
С	5.01049	0.23853	-1.24808
С	6.28690	-0.52038	-1.50968
С	5.01491	1.64414	-1.24980
С	0.67116	3.30367	-0.16671
С	-2.71038	0.30505	0.67132
С	-3.83545	-0.44807	0.95290
С	-2.69864	1.70186	0.66907
С	-5.01050	0.23853	1.24808
С	-6.28691	-0.52038	1.50968
С	-5.01492	1.64414	1.24980
С	-7.11584	-0.71895	0.23474
С	3.87777	2.38313	-0.96558
С	-0.67117	3.30367	0.16673

Table S11. continued.

С	-3.87777	2.38314	0.96558
С	-8.41439	-1.48096	0.48282
С	-9.24302	-1.68215	-0.78320
С	-10.54410	-2.44420	-0.54097
С	-11.36458	-2.63926	-1.81295
С	7.11584	-0.71895	-0.23475
С	8.41439	-1.48096	-0.48284
С	9.24303	-1.68215	0.78318
С	10.54411	-2.44420	0.54094
С	11.36460	-2.63925	1.81292
Н	3.79897	-1.53118	-0.94490
Н	3.90496	3.46655	-0.97721
Н	1.20481	4.23707	-0.29904
Н	7.34164	0.26127	0.20204
Н	8.18245	-2.45881	-0.92392
Н	6.05239	-1.49823	-1.94271
Н	5.94004	2.16036	-1.48462
Н	-1.20481	4.23707	0.29905
Н	-3.79898	-1.53117	0.94491
Н	6.88874	0.01800	-2.24945
Н	9.01428	-0.94229	-1.22755
Н	6.50937	-1.25445	0.50548

Table S11. continued.

Η	9.47394	-0.70403	1.22458
Н	-3.90497	3.46655	0.97721
Н	8.64238	-2.22013	1.52788
Н	10.31187	-3.42091	0.10015
Н	10.79779	-3.20112	2.56176
Н	-6.88875	0.01801	2.24944
Н	-5.94004	2.16036	1.48462
Н	-7.34164	0.26127	-0.20204
Н	11.14270	-1.90592	-0.20350
Н	11.63462	-1.67561	2.25592
Н	-6.05239	-1.49822	1.94271
Н	-6.50936	-1.25445	-0.50548
Н	12.28937	-3.18659	1.61312
Н	-9.01428	-0.94229	1.22753
Н	-9.47393	-0.70404	-1.22461
Н	-8.18245	-2.45881	0.92391
Н	-8.64237	-2.22014	-1.52789
Н	-11.14270	-1.90593	0.20346
Н	-10.31187	-3.42091	-0.10017
Н	-11.63459	-1.67562	-2.25596
Н	-10.79777	-3.20114	-2.56178
Н	-12.28935	-3.18660	-1.61316

Table S12. Cartesian coordinates of isomer B of 22 by TD-DFT calculations

0	-1.52213	-0.44880	-0.89668
С	-0.69109	-1.29264	-0.22615
С	0.69109	-1.29264	-0.22615
0	1.52213	-0.44880	-0.89668
С	1.38008	-2.24402	0.52974
С	-1.38008	-2.24402	0.52974
С	-2.79231	-0.85240	-0.57497
С	-3.95192	-0.26482	-1.04637
С	-2.78051	-1.94604	0.29397
С	-5.16357	-0.80485	-0.62267
С	-6.46536	-0.17929	-1.05587
С	-5.16843	-1.90485	0.25235
С	-0.69154	-3.20052	1.28990
С	2.79231	-0.85240	-0.57496
С	3.95192	-0.26482	-1.04637
С	2.78051	-1.94604	0.29398
С	5.16357	-0.80485	-0.62267
С	6.46536	-0.17929	-1.05586
С	5.16843	-1.90485	0.25236
С	6.96561	0.87229	-0.05790
С	-3.99648	-2.48170	0.71468
С	0.69154	-3.20052	1.28990

Table S12. continued.

С	3.99648	-2.48171	0.71468
С	8.28480	1.51190	-0.48107
С	8.78707	2.56157	0.50679
С	10.10706	3.20506	0.08757
С	10.59968	4.25327	1.08145
С	-6.96561	0.87229	-0.05790
С	-8.28480	1.51190	-0.48108
С	-8.78707	2.56157	0.50678
С	-10.10706	3.20506	0.08756
С	-10.59968	4.25327	1.08144
Н	-3.91424	0.58198	-1.72166
Н	-4.02630	-3.33246	1.38557
Н	-1.24102	-3.93121	1.87085
Н	-7.08204	0.40478	0.92721
Н	-8.16343	1.97283	-1.46969
Н	-6.34114	0.28738	-2.03847
Н	-6.12295	-2.31232	0.56915
Н	1.24102	-3.93121	1.87085
Н	3.91424	0.58198	-1.72166
Н	-7.22684	-0.95818	-1.16889
Н	-9.04592	0.72981	-0.59795
Н	-6.19943	1.64832	0.05726

Table S12. continued.

Н	-8.90765	2.10066	1.49565
Н	4.02630	-3.33246	1.38557
Н	-8.02518	3.34297	0.62391
Н	-9.98510	3.66433	-0.90056
Н	-9.86945	5.06088	1.19223
Н	6.34114	0.28738	-2.03846
Н	6.12295	-2.31232	0.56915
Н	6.19943	1.64832	0.05727
Н	-10.86705	2.42335	-0.02894
Н	-10.75758	3.81126	2.07010
Н	7.22684	-0.95818	-1.16889
Н	7.08204	0.40478	0.92722
Н	-11.54450	4.69827	0.75902
Н	8.16343	1.97283	-1.46969
Н	8.02518	3.34297	0.62392
Н	9.04592	0.72981	-0.59794
Н	8.90765	2.10066	1.49566
Н	9.98510	3.66434	-0.90055
Н	10.86705	2.42335	-0.02893
Н	9.86945	5.06088	1.19224
Н	10.75758	3.81126	2.07011
Н	11.54450	4.69827	0.75902