Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Electronic Supplementary Information (ESI)

Molecular Conformational Twist Dependent Wide Fluorescence Tuning and White Light Emission in a Single Fluorophore via Halochormism

Parthasarathy Gayathri,^a Probal Nag,^b Neethu Anand,^b Sivaranjana Reddy Vennapusa,^b Mehboobali Pannipara,^{c,d} Abdullah G. Al-Sehemi,^{c,d} Dohyun Moon*^e Savarimuthu Philip Anthony*^a

^{a)}School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur-613401, Tamil Nadu, India. Fax: +914362264120; Tel: +914362264101; E-mail: philip@biotech.sastra.edu

^{b)}School of chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala-695551, India

^{b)}Department of chemistry, King Khalid University, Abha 61413, Saudi Arabia. ^{c)}Research center for Advanced Materials Science, King Khalid University, Abha 61413, Saudi Arabia.

^{b)}Beamline Department, Pohang Accelerator Laboratory, 80 Jigokro-127beongil, Nam-gu, Pohang, Gyeongbuk, Korea, Email: dmoon@postech.ac.kr

Scheme S1. Synthesis of carbazole and triphenylamine based isomers (1-6).

 ^{1}H and ^{13}C NMR of **2**.

 ^{1}H and ^{13}C NMR of **3**.

 ^{1}H and ^{13}C NMR of 4.

 ^{1}H and ^{13}C NMR of 5.

${}^{1}H$ and ${}^{13}C$ NMR of **6**.

1: m/z calculated for $C_{26}H_{17}N_3$ (M + H): 371.14, found: 371.2

2: m/z calculated for $C_{26}H_{17}N_3$ (M + H): 371.14, found: 371.2

3: m/z calculated for $C_{26}H_{17}N_3$ (M + H): 371.14, found: 371.2

4: m/z calculated for $C_{26}H_{19}N_3$ (M + H): 373.16, found: 373.3

5: m/z calculated for $C_{26}H_{19}N_3$ (M + H): 373.16, found: 373.2

6: m/z calculated for $C_{26}H_{19}N_3$ (M + H): 373.16, found: 373.2

Fig. S1. Fluorescence spectra of (a) 1 and (b) 2 in different solvents (10⁻⁴ M).

Fig. S2. Fluorescence spectra of (a) 4, (b) 5 and (c) 6 in different solvents (10⁻⁴ M).

Fig. S3. Absorption spectra of 1-3 in different solvents (10^{-4} M).

Fig. S4. Absorption spectra of 4-6 in different solvents (10⁻⁴ M).

	Quantum Yield (<i>D</i> _f)							
Solvents	1	2	3	4	5	6		
Toluene	0.142	0.28	0.095	0.036	0.21	0.085		
CHCl ₃	0.116	0.09	0.068	0.035	0.096	0.051		
Ethyl acetate	0.132	0.25	0.088	0.033	0.023	0.031		
DMF	0.160	0.163	0.13	0.030	0.059	0.036		
CH ₃ CN	0.051	0.16	0.098	0.025	0.085	0.015		

Table S1. Fluorescence efficiency of **1-6** compared to quinine sulfate in different solvent polarity.

Fig. S5. Absorption changes of **2** (10^{-4} M) upon addition of (a, c) TFA (10^{-2} M) and (b, d) PTSA (10^{-2} M) in (a, b) toluene and (c, d) CHCl₃.

Fig. S6. Absorption changes of **3** (10⁻⁴ M) upon addition of (a, c) TFA (10⁻² M) and (b, d) PTSA (10⁻² M) in (a, b) toluene and (c, d) CHCl₃..

Fig. S7. Absorption changes of 4 (10^{-4} M) upon addition of (a, c) TFA (10^{-2} M) and (b, d) PTSA (10^{-2} M) in (a, b) toluene and (c, d) CHCl₃..

Fig. S8. Absorption changes of 5 (10^{-4} M) upon addition of (a, c) TFA (10^{-2} M) and (b, d) PTSA (10^{-2} M) in (a, b) toluene and (c, d) CHCl₃..

Fig. S9. Absorption changes of **6** (10⁻⁴ M) upon addition of (a, c) TFA (10⁻² M) and (b, d) PTSA (10⁻² M) in (a, b) toluene and (c, d) CHCl₃..

Fig. S10. CIE 1931 chromaticity plot with emission color coordinates of 1 in $CHCl_3$ by adding (a) TFA and (b) PTSA (10⁻² M).

Fig. S11. Fluorescence spectra of **2** (10⁻⁴ M) upon addition of (a, c) TFA (10⁻² M) and (b, d) PTSA (10⁻² M) in (a, b) toluene and (c, d) CHCl₃. $\lambda_{exc} = 370$ nm.

Fig. S12. Digital fluorescence images of **2** (10⁻⁴ M) upon addition of TFA (10⁻² M) and PTSA (10⁻² M) in toluene and CHCl₃. $\lambda_{exc} = 365$ nm.

Fig. S13. (a, c) Digital fluorescence images and (b, d) CIE 1931 chromaticity plot with emission colour coordinates of **3** (10⁻⁴ M) upon adding (a, b) TFA (10⁻² M) and (c, d) PTSA (10⁻² M) in CHCl₃. $\lambda_{exc} = 365$ nm (for digital images) and 370 nm (for spectra)..

Fig. S14. Fluorescence spectra of **5** (10⁻⁴ M) upon addition of (a, c) TFA (10⁻² M) and (b, d) PTSA (10⁻² M) in (a, b) toluene and (c, d) CHCl₃. $\lambda_{exc} = 370$ nm.

Fig. S15. Fluorescence spectra of (a) **3** (10⁻⁴ M) and (b) **6** (10⁻⁴ M) upon addition of TFA (10⁻² M) in DMF. $\lambda_{exc} = 370$ nm..

Fig. S16. Molecular structure of 6-TFA in the crystal lattice.

Fig. S17. Molecular structure of 3-TFA in the crystal lattice.

Fig. S18. NMR spectra of (a) 3 and 3-TFA and (b) 6 and 6-TFA.

Fig. S19. Calculated frontier orbital for **3**, **3-H**, **6** and **6-H** in DMF.

		HOMO (eV)	LUMO (eV)	Band gap (eV)
3	Toluene	-5.57	-2.49	-3.08
	CHCl ₃	-5.57	-2.48	-3.09
	DMF	-5.58	-2.47	-3.11
3-Н	Toluene	-6.49	-4.50	-1.99
	CHCl ₃	-6.07	-3.89	-2.18
	DMF	-5.74	-3.32	-2.42
6	Toluene	-5.29	-2.21	-3.08
	CHCl ₃	-5.29	-2.23	-3.06
	DMF	-5.29	-2.25	-3.04
6-Н	Toluene	-6.50	-4.15	-2.35
	CHCl ₃	-6.02	-3.59	-2.43
	DMF	-5.62	-3.08	-2.54

Table S2. Calculated energy level of HOMO, LUMO and optical band gap.

Fig. S20. Calculated ground and excited state (S1) molecular conformation of (a) **3** and **3-H** and (b) **6** and **6-H** in toluene.

Fig. S21. Calculated ground and excited state (S1) molecular conformation of (a) **3** and **3-H** and (b) **6** and **6-H** in $CHCl_3$.

Fig. S22. Calculated ground and excited state (S1) molecular conformation of (a) **3** and **3-H** and (b) **6** and **6-H** in DMF.

Table S3. Comparison of torsion angle of ground/excited state **3** and **6** (protonated/deprotonated) in different sovlents.

		Groun	d state	Excited state (S1)	
		Torsion angle (τ1)	Torsion angle (τ2)	Torsion angle (τ1)	Torsion angle (τ2)
3	Toluene	49.69	49.36	89.48	89.49
	CHCl ₃	49.85	49.55	89.28	89.14
	DMF	50.10	49.84	85.40	85.34
3-Н	Toluene	42.20	42.13	89.69	90.38
	CHCl ₃	43.94	43.58	89.99	90.51
	DMF	46.19	46.08	90.24	90.13
6	Toluene	27.96	27.69	84.71	85.15
	CHCl ₃	27.16	26.56	81.21	81.44
	DMF	26.18	25.52	72.87	72.94
6-Н	Toluene	18.86	18.26	81.22	96.60
	CHCl ₃	19.45	18.97	91.87	91.40
	DMF	20.67	20.06	85.44	85.30