Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary Information

Fe₃O₄-SiO₂-Graphene Oxide-Amino Acid Ionic Liquid magnetic solid-phase extraction combined with ICP-OES for speciation of Cr(III) and Cr(VI) in environmental waters

Jinshun Cang^{1, 2}, Weixi Gu¹, Yuheng Zhang¹, Xiashi Zhu^{*, 1}

1. College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou University, Yangzhou 225002, P. R. China.

2. Jiangsu R&D Center of the Ecological Dyes and Chemicals, Yancheng Polytechnic College, Yancheng, 224005, P. R. China

E-mail:

xszhu@yzu.edu.cn

Fig. S1 SEM images of (a) Fe₃O₄-SiO₂-GO and (b) Fe₃O₄-SiO₂-GO-AAIL.

Fig. S2 FT-IR spectra (a) IL, (b) GO, (c) Fe₃O₄, (d) Fe₃O₄-SiO₂, (e) Fe₃O₄-SiO₂-GO, (f) Fe₃O₄-SiO₂-GO-AAIL.

Fig. S3 Magnetic hysteresis loops of Fe₃O₄, Fe₃O₄-SiO₂, Fe₃O₄-SiO₂-GO and Fe₃O₄-SiO₂-GO-AAIL.

Fig. S4 TGA spectra of Fe₃O₄-SiO₂-GO and Fe₃O₄-SiO₂-GO -AAIL.

Fig. S5 Zeta potential plots of Fe₃O₄-SiO₂-GO-AAIL.

Table S1 Existent forms of Cr(III) and Cr(VI) under different pH.

Table S2 The determination results of Cr(III) and Cr(VI) in certified sample.

Table S3 The determination results of Cr(III) and Cr(VI) in certified sample and environmental samples by FAAS.

Fig. S1 SEM images of (a) Fe₃O₄-SiO₂-GO and (b) Fe₃O₄-SiO₂-GO-AAIL.

Fig. S2 FT-IR spectra (a) IL, (b) GO, (c) Fe_3O_4 , (d) Fe_3O_4 -SiO₂, (e) Fe_3O_4 -SiO₂-GO, (f) Fe_3O_4 -SiO₂-GO-AAIL.

Fig. S3 Magnetic hysteresis loops of Fe₃O₄, Fe₃O₄-SiO₂, Fe₃O₄-SiO₂-GO and Fe₃O₄-SiO₂-GO-AAIL.

Fig. S4 TGA spectra of Fe₃O₄-SiO₂-GO and Fe₃O₄-SiO₂-GO -AAIL.

Fig. S5 Zeta potential plots of Fe₃O₄-SiO₂-GO-AAIL.

Table S1 Existent forms of Cr(III) and Cr(VI) under different pH

pН	3.0	4.0		6.0	6.5	7.0	9.0	>9.0	
Cr(III)	Cr(H ₂ O	$_{2}O)_{6}^{3+}$		(OH) ²⁺	$Cr(OH)_2^+$	Cr(OH) ₃		Cr(OH) ₄ -	
Cr(VI)	HCrO ₄ -						CrO ₄ ²⁻		

Table S2 The determination results of Cr(III) and Cr(VI) in certified sample.

Samples	Certified value (µg· L ⁻¹)	Added (µg· L ⁻¹)		Found ($\mu g \cdot L^{-1}$)		Recovery (%)	
		Cr(III)	Cr(VI)	Cr(III)	Cr(VI)	Cr(III)	Cr(VI)
GSB 07- 1187-2000	60.30	0.00	0.00	52.64 ± 2.59	7.36 ± 2.93	-	-
		50.00	50.00	103.93 ± 3.33	59.46 ± 2.46	102.6	104.2
		100.00	100.00	150.55 ± 3.98	$\begin{array}{c} 119.17 \pm \\ 4.50 \end{array}$	97.9	111.8
		150.00	150.00	201.63 ± 1.85	166.68 ± 2.59	99.3	106.2

Samples	Total Cr ($\mu g \cdot L^{-1}$)
GSB 07-1187-2000	60.34
Lake water	14.63
Water Sample Near Pesticide Chemical Plant	34.80
Water Sample Near	20.77
Chemical Plant	29.66

Table S3 The determination results of Cr(III) and Cr(VI) in certified sample and

environmental samples by FAAS.