Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting information for New Journal of Chemistry

Electrochromic behavior of *fac*-tricarbonyl rhenium complexes

Qian-hua Zhou, Ming-yue Pan, Qi He, Qian Tang, Cheuk-fai Chow and Cheng-bin Gong

Materials and methods	2
Synthesis of Ligands L ₂ -L ₅	3
Synthesis of rhenium(I) complexes <i>fac</i> -Re(CO ₃)(L _x)Cl (x=1-5)	11
Crystal data and structure refinement	.22
Cyclic voltammetry	24
Electrochromic investigation	. 25
CIE L*a*b* coordinate values	28
Solid-state electrochromic devices	. 28
Cyclic voltammetry and UV-vis absorption spectra	. 29

1. Materials and methods

3-Chloropropionyl chloride (analytical reagent, 96%) was purchased from Shanghai Macklin Biochemical Co., Shanghai, China. Anisole (analytical reagent) was purchased from Aladdin Co., Shanghai, China. Anhydrous aluminum trichloride was purchased from Damao Chemical Reagent Factory, Tianjin, China. Toluene was purchased from Chongqing Chuandong Chemical (Group) Co., Chongqing, China. o-Phenylenediamine was purchased from Chengdu Kelong Chemical Reagent Company, Chengdu, China. Re(CO)₅Cl (95%) was purchased from Bide Pharmatech Ltd., Shanghai, China. 4,7-Diphenylphenanthroline (L₁) was purchased from Shanghai DiBai Chemical Reagent Company. Toluene and dichloromethane were redistilled before use.

¹H and ¹³C nuclear magnetic resonance (NMR) spectra were obtained on a Bruker 600 MHz spectrometer. High-resolution mass spectra were recorded on a Bruker Impact II instrument (Germany). Infrared spectra were performed by a Spectrum-GX infrared spectrometer (Perkin-Elmer, USA) using KBr pellets. Cyclic voltammetry was determined on a CHI650B electrochemical workstation with Ag/Ag^+ reference electrode, platinum disk (0.02 cm²) working electrode. and platinum wire counter electrodes. respectively. The spectroelectrochemistry was investigated using an UV-vis spectrophotometer UV-2700 (Shimadzu Instrument Co., Ltd, Japan). The color change of the ECD was presented by measuring the CIE (International Commission on Illumination) L*a*b* color space coordinates with a color reader CR-10 plus (Konica Minolta, Inc., Japan). The single crystal structure was verified by an Agilent SuperNova EosS2 single crystal diffractometer (United States) using a graphite monochromatic Mo K α radiation ($\lambda = 0.71073$ Å) source. The crystal was kept at 287.64(16) K during data collection. Using Olex2, the structure was solved with the Superflip structure solution program using Charge Flipping and refined with the ShelXL refinement package using Least Squares minimisisation.

2. Synthesis of Ligands L₂-L₅

Scheme S1. Synthetic route of ligands L₂-L₅.

2.1. Synthesis of L_2

A solution of anisole (3.20 mL, 30 mmol), 3-chloropropionyl chloride (3.20 mL, 33 mmol) and anhydrous aluminum trichloride (8.40 g, 63 mmol) in redistilled dichloromethane (40 mL) was stirred at 0 °C for 20 h, and then saturated ammonium chloride was added. The mixture was neutralized with 10wt.% NaOH solution, and extracted with dichloromethane (3×50 mL). All organic layers were combined, washed with saturated brine, dried over anhydrous MgSO₄, filtered and concentrated to dryness. The residue was purified by column chromatography on silica gel using ethyl acetate/petroleum ether 1:100 (v/v) as eluents, and 3-chloro-1-(4-methoxyphenyl)propan-1-one was obtained as a white solid (2.80 g, yielded 47%). ¹H NMR (600 MHz, CDCl₃): δ (ppm) = 7.938 (d, *J* = 4.8 Hz, 2H), 6.948 (d, *J* = 4.8 Hz, 2H), 3.910 (t, *J* = 2.4-5.4 Hz, 2H), 3.872 (s, 3H), 3.399 (t, *J* = 1.8-4.8 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃): δ (ppm): 195.16, 163.87, 130.35, 129.60, 113.90, 55.49, 40.93, 38.95.

Under nitrogen atmosphere, o-phenylenediamine (1.08 g, 10 mmol) was added in concentrated hydrochloric acid (24 mL), the mixture was stirred at 60 °C for 2-3 h, and then heated to 90 °C. 3-Chloro-1-(4-methoxyphenyl)propan-1-one (4.97 g, 25 mmol) was added in batches. After reacted for 2 h, concentrated sulfuric acid (6 mL) was added into reaction system, and reaction continued for 2 h. The mixture was adjusted to pH=9 with ammonia, extracted with chloroform (3×50 mL). All organic layers were combined, washed with saturated brine, dried over anhydrous MgSO₄, filtered and

concentrated to dryness. The residue was purified by column chromatography on silica gel using ethyl acetate/petroleum ether 5:1 (v/v), and 4,7-bis(4-methoxyphenyl)-1,10-phenanthroline (L₂) was obtained as a light yellow solid (0.50 g, yielded 14%). ¹H NMR (600 MHz, CDCl₃): δ (ppm) = 9.219 (d, *J* = 4.2 Hz, 2H), 7.905 (s, 2H), 7.569 (d, *J* = 4.2 Hz, 2H), 7.483 (d, *J* = 9.0 Hz, 4H), 7.075 (d, *J* = 9.0 Hz, 4H), 3.909 (s, 6H). ¹³C NMR (150 MHz, CDCl₃): δ (ppm): 159.99, 149.66, 148.27, 146.81, 130.96, 130.27, 126.57, 123.98, 123.48, 114.17, 55.42.

Fig. S1. ¹H NMR and ¹³C NMR of L₂ in CDCl₃.

2.2. Synthesis of L_3

A solution of toluene (5.20 mL, 50 mmol), 3-chloropropionyl chloride (5.55 mL, 55 mmol) and anhydrous aluminum trichloride (14.00 g, 105 mmol) in redistilled dichloromethane (60 mL) was stirred at 0 °C for 20 h, and then saturated ammonium chloride was added. The mixture was neutralized with 10wt.% NaOH solution, and extracted with dichloromethane (3×50 mL). All organic layers were combined, washed with saturated brine, dried over anhydrous MgSO₄, filtered and concentrated to dryness. The residue was purified by column chromatography on silica gel using ethyl acetate/petroleum ether 1:100 (v/v) as eluents, and 3-chloro-1-(p-tolyl) propan-1-one was obtained as a white solid (6.44 g, yielded 70.5%). ¹H NMR (600 MHz, CDCl₃): δ (ppm) = 7.858 (d, *J* = 7.8 Hz,

2H), 7.278 (d, *J* = 7.8 Hz, 2H), 3.918 (t, *J* = 6.6-13.8 Hz, 2H), 3.432 (t, *J* = 6.6-13.2 Hz, 2H), 2.432 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ(ppm): 196.29, 144.40, 134.04, 129.40, 128.17, 41.20, 38.80, 21.62.

Under nitrogen atmosphere, o-phenylenediamine (1.08 g, 10 mmol) was added in concentrated hydrochloric acid (24 mL), the mixture was stirred at 60 °C for 2-3 h, and then heated to 90 °C. 3-Chloro-1-(p-tolyl) propan-1-one (4.57 g, 25 mmol) was added in batches. After reacted for 2 h, concentrated sulfuric acid (6 mL) was added into reaction system, and reaction continued for 2 h. The mixture was adjusted to pH=9 with ammonia, extracted with chloroform (3 × 50 mL). All organic layers were combined, washed with saturated brine, dried over anhydrous MgSO4, filtered and concentrated to dryness. The residue was purified by column chromatography on silica gel using ethyl acetate/petroleum ether 2:1 (v/v), and 4,7-bis(4-Methylphenyl)-1,10-phenanthroline (L₃) was obtained as a white solid (0.59 g, yielded 16%). ¹H NMR (600 MHz, CDCl₃): δ (ppm) = 9.223 (d, *J* = 4.2 Hz, 2H), 7.877 (s, 2H), 7.571 (d, *J* = 4.8 Hz, 2H), 7.431 (d, *J* = 7.8 Hz, 4H), 7.348 (d, *J* = 7.8 Hz, 4H), 2.472 (s, 6H). ¹³C NMR (150 MHz, CDCl₃): δ (ppm): 149.68, 148.57, 146.81, 138.44, 135.08, 129.59, 129.32, 126.51, 124.01, 123.49, 21.26.

Fig. S2. ¹H NMR and ¹³C NMR of L₃ in CDCl₃.

2.3. Synthesis of L₄

L₄ was synthesized via oxidation and esterification using L₃ as the raw material. L₃ (1.00 g), concentrated nitric acid (1 mL) and water (4 mL) were added into a reactor. After ultrasonic oscillation for 10 minutes, the mixture was stirred at 180 °C for 24 h, poured into 100 mL water, and filtered. The obtained solid was added into methanol, heated to reflux, concentrated and dried to obtain 4,4'-(1,10-phenanthroline-4,7-diyl) dibenzoic acid. Concentrated sulfuric acid (0.20 mL) and 4,4'-(1,10-phenanthroline-4,7-diyl) dibenzoic acid (0.42 g, 1 mmol) were added in methanol (15 mL), the mixture was refluxed for 72 h. The solution was adjusted pH=8 using sodium carbonate, extracted with chloroform (3 × 50 mL), combined all organic layers, washed with saturated brine, dried over anhydrous MgSO₄, filtered and concentrated to dryness. The residue was purified by column chromatography on silica gel using ethyl acetate/petroleum ether 5:1 (v/v) to obtain 4,7-bis(4-carbomethoxyphenyl)-1,10-phenanthroline (L₄) as a light white solid (0.50 g, yielded 59%). ¹H NMR

 $(600 \text{ MHz}, \text{CDCl}_3) \delta(\text{ppm}) = 9.212 \text{ (d, } J = 4.2 \text{ Hz}, 2\text{H}), 8.160 \text{ (d, } J = 7.8 \text{ Hz}, 4\text{H}), 7.804 \text{ (s, } 2\text{H}), 7.773 \text{ (d, } J = 4.2 \text{ Hz}, 2\text{H}), 7.745 \text{ (d, } J = 7.8 \text{ Hz}, 4\text{H}), 3.921 \text{ (s, } 6\text{H}).$ ¹³C NMR (150 MHz, DMSO-*d*₆): $\delta(\text{ppm})$: 166.30, 150.26, 146.92, 146.69, 142.48, 130.57, 130.23, 130.00, 125.86, 124.37, 124.08, 52.81.

Fig. S3. ¹H NMR and ¹³C NMR of L₄ in CDCl₃.

2.4. Synthesis of L₅

A solution of bromobenzene (5.23 mL, 50 mmol), 3-chloropropionyl chloride (5.55 mL, 55 mmol) and anhydrous aluminum trichloride (14.00 g, 105 mmol) in redistilled dichloromethane (60 mL) was stirred at 0 °C for 20 h, and then saturated ammonium chloride was added. The mixture was neutralized with 10wt.% NaOH solution, and extracted with dichloromethane (3×50 mL). All organic layers were combined, washed with saturated brine, dried over anhydrous MgSO₄, filtered and concentrated to dryness. The precipitate was recrystallized in ethyl acetate and petroleum ether to give 3-chloro-1-(bromo) propan-1-one as a white solid (7.26 g, yielded 59%). ¹H NMR (600 MHz, CDCl₃) δ (ppm): 7.817 (t, *J* = 7.1-8.4 Hz, 2H), 7.626 (t, *J* = 6.6-8.4 Hz, 2H), 3.911 (t, *J* = 6.6-13.2 Hz, 4H),

3.420 (t, *J* = 6.6-13.2 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ(ppm): 195.65, 135.16, 132.10, 129.54, 128.81, 41.23, 38.42.

Under nitrogen atmosphere, o-phenylenediamine (1.08 g, 10 mmol) was added in concentrated hydrochloric acid (24 mL), the mixture was stirred at 60 °C for 2-3 h, and then heated to 90 °C. 3-Chloro-1-(bromo) propan-1-one (6.19 g, 25 mmol) was added in batches. After reacted for 2 h, concentrated sulfuric acid (6 mL) was added into reaction system, and reaction continued for 2 h. The mixture was adjusted to pH=9 with ammonia, extracted with chloroform (3×50 mL). All organic layers were combined, washed with saturated brine, dried over anhydrous MgSO₄, filtered and concentrated to dryness. The residue was purified by column chromatography on silica gel using ethyl acetate/petroleum ether 5:1 (v/v), and 4,7-bis(4-bromophenyl)-1,10-phenanthroline (L₅) was obtained as a white solid (0.95 g, yielded 19%). ¹H NMR (600 MHz, CDCl₃): δ (ppm) = 9.249 (d, *J* = 4.2 Hz, 2H), 7.809 (s, 2H), 7.689 (d, *J* = 8.4 Hz, 4H), 7.567 (d, *J* = 4.8 Hz, 2H), 7.407 (d, *J* = 8.4 Hz, 4H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm): 149.93, 147.23, 146.89, 136.77, 131.93, 131.22, 126.16, 123.91, 123.42, 123.06.

Fig. S4. ¹H NMR and ¹³C NMR of L₅ in CDCl₃.

3. Synthesis of rhenium(I) complexes *fac*-Re(CO₃)(L_x)Cl (x=1-5)

Scheme S2. Synthesis of Re(I) complexes *fac*-Re(CO)₃(L_x)Cl (x=1-5).

A mixture of ligand and Re(CO)₅Cl (1:1 equiv.) in redistilled toluene was stirred for 20 h at 110 $^{\circ}$ C under nitrogen atmosphere, and then cooled to room temperature. The solution was concentrated and diethyl ether was added to precipitate. The precipitate was purified by chromatography on silica gel using different proportions of ethyl acetate/petroleum ether as eluent to afford target product.

Fac-**Re**(**CO**)₃(**L**₁)**Cl.** L1 (166 mg, 0.5 mmol) reacted with Re(CO)₅Cl (188 mg, 0.5 mmol) to afford Re(CO)₃(L₁)Cl as a yellow solid (221 mg, yielded 69%). M.P.: 284.0-284.3 °C. IR(KBr): $v_{C=0}=2016$, 1913, 1879 cm⁻¹). ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm) = 9.518 (d, *J* = 5.4 Hz, 2H), 8.170 (s, 2H),

8.022 (d, J = 5.4 Hz, 2H), 7.749 (d, J = 6.6 Hz, 4H), 7.660-7.702 (m, 6H)). ¹³C NMR (150 MHz, DMSO-*d*₆): δ (ppm): 198.26, 190.45, 153.67, 150.99, 147.16, 135.82, 130.30, 129.63, 128.64, 127.17, 126.12. HRMS(ESI) (CHCl₃, positive mode) m/z for C₂₇H₁₆ClN₂O₃Re [M+Na]⁺: calculated 661.0299, found 661.0291.

Fig. S5. ¹H NMR of Re(CO)₃(L₁)Cl (A), ¹H NMR comparison of L₁ in CDCl₃ and Re(CO)₃(L₁)Cl in DMSO- d_6 (C), ¹³C NMR (C) and HRMS (D) of Re(CO)₃(L₁)Cl.

Fac-**Re**(**CO**)₃(**L**₂)**Cl**. L₂ (235 mg, 0.6 mmol) reacted with Re(CO)₅Cl (217 mg, 0.6 mmol) to afford Re(CO)₃(L₂)Cl as a yellow solid (399 mg, yielded 95%). M.P.: 166-166.5 °C. IR(KBr): $v_{C=0}$ = 2018, 1883 cm⁻¹). ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm) = 9.439 (d, *J* = 4.80 Hz, 2H), 8.208 (s, 2H), 8.032 (d, *J* = 5.4 Hz, 2H), 7.704 (d, *J* = 9.0 Hz, 4H), 7.246 (d, *J* = 8.4 Hz, 4H), 3.891 (s, 6H). ¹³C NMR (150

MHz, DMSO-*d*₆) δ(ppm): 198.35, 190.58, 161.15, 153.44, 150.75, 147.29, 131.96, 128.62, 127.96, 126.84, 126.04, 115.26, 55.97. HRMS(ESI) (CHCl₃, positive mode) m/z for C₂₉H₂₀ClN₂O₅Re [M+Na]⁺: calculated 721.0510, found 721.0506.

Fig. S6. ¹H NMR of Re(CO)₃(L₂)Cl (A), ¹H NMR comparison of L₂ in CDCl₃ and Re(CO)₃(L₂)Cl in DMSO- d_6 (C), ¹³C NMR (C) and HRMS (D) of Re(CO)₃(L₂)Cl.

Fac-**Re**(**CO**)₃(**L**₃)**Cl**. L₃ (180 mg, 0.5 mmol) reacted with Re(CO)₅Cl (188 mg, 0.5 mmol) to afford Re(CO)₃(L₃)Cl as a yellow solid (243 mg, yielded 73%). M.P: 262.5-262.8 °C. IR(KBr): $v_{C=0}= 2020$, 1887 cm⁻¹). ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm): 9.475 (d, *J* = 4.80 Hz, 2H), 8.176 (s, 2H), 8.044 (d, *J* = 4.80 Hz, 2H), 7.628 (d, *J* = 7.20 Hz, 4H), 7.492 (d, *J* = 7.80 Hz, 4H), 2.456 (s, 6H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 198.30, 190.51, 153.56, 151.05, 147.23, 140.18, 132.98, 130.27, 130.25, 128.65, 127.01, 126.07, 21.38. HRMS(ESI) (CHCl₃, positive mode) m/z for C₂₉H₂₀ClN₂O₃Re[M+Na]⁺: calculated 689.0612, found 689.0608.

Fig. S7. ¹H NMR of *fac*-Re(CO)₃(L₃)Cl in DMSO- d_6 (A), ¹H NMR comparison of L₃ in CDCl₃ and *fac*-Re(CO)₃(L₃)Cl in DMSO- d_6 (B), ¹³C NMR (C) and HRMS (D) of *fac*-Re(CO)₃(L₃)Cl.

Fac-Re(CO)₃(L₄)Cl. L₄ (135 mg, 0.3 mmol) reacted with Re(CO)₅Cl (108 mg, 0.3 mmol) to afford *fac*-Re(CO)₃(L₄)Cl as a yellow solid (293 mg, yielded 67%). M.P: 285.3-285.5 °C. IR(KBr): $v_{C=}$ 0:=2021, 1926, 1894cm⁻¹). ¹H NMR (600 MHz, DMSO-*d*₆) δ (ppm): 9.563 (d, *J* = 4.80 Hz, 2H), 8.238 (d, *J* = 8.40 Hz, 4H), 8.133 (t, *J* = 5.4-12.6 Hz, 4H), 7.902 (d, *J* = 7.80 Hz, 4H), 3.946 (s, 6H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 198.16, 190.31, 166.26, 153.88, 149.81, 147.09, 140.31, 131.18, 130.81, 130.24, 128.51, 127.27, 126.14, 52.95. HRMS(ESI) (CHCl₃, positive mode) m/z for C₃₁H₂₀ClN₂O₇Re[M+Na]⁺: calculated 777.0409, found 777.0395.

Fig. S8. ¹H NMR of *fac*-Re(CO)₃(L₄)Cl in DMSO- d_6 (A), ¹H NMR comparison of L₄ in CDCl₃ and *fac*-Re(CO)₃(L₄)Cl in DMSO- d_6 (B), ¹³C NMR (C) and HRMS (D) of *fac*-Re(CO)₃(L₄)Cl.

Fac-Re(CO)₃(L₅)Cl. L₅ (294 mg, 0.6 mmol) reacted with Re(CO)₅Cl (217 mg, 0.6 mmol) to give Re(CO)₃(L₅)Cl as a yellow solid (420 mg, yielded 88%). M.P: >320 °C. IR(KBr): $v_{C=0}=$ 2017, 1920, 1882 cm⁻¹). ¹H NMR(600 MHz, DMSO-*d*₆) δ (ppm): 9.510 (t, *J* = 3.60 Hz, 2H); 8.128 (s, 2H); 8.082 (t, *J* = 1.20 Hz, 2H); 7.896 (d, *J* = 6.60 Hz, 4H); 7.696 (d, *J* = 6.60 Hz, 4H). ¹³C NMR (150MHz, DMSO-*d*₆) δ (ppm): 198.19, 190.36, 153.79, 149.77, 147.11, 134.98, 132.63, 132.40, 128.51, 127.18, 126.09, 124.17. HRMS(ESI)(CHCl₃, positive mode) m/z for C₂₇H₁₄Br₂ClN₂O₃Re [M+Na]⁺: calculated 816.8509, found 816.8482.

Fig. S9. ¹H NMR of *fac*-Re(CO)₃(L₅)Cl in DMSO- d_6 (A), ¹H NMR comparison of L₅ in CDCl₃ and *fac*-Re(CO)₃(L₅)Cl in DMSO- d_6 (B), ¹³C NMR (C) and HRMS (D) of *fac*-Re(CO)₃(L₅)Cl.

4. Crystal data and structure refinement

Compound	fac-Re(CO) ₃ (L ₄)Cl	
Formula	$C_{31}H_{20}ClN_2O_7Re$	
Formula weight	754.14	
Temperature/K	287.64(16)	
Crystal system	monoclinic	
Space group	P2 ₁ /m	
a/Å	9.5221(4)	
b/Å	20.0965(7)	
c/Å	16.7407(5)	
α/°	90	
β/°	105.965(4)	
$\gamma/^{\circ}$	90	
Volume/Å ³	3080.0(2)	
Ζ	4	
$\rho_{calc}g/cm^3$	1.626	
μ/mm ⁻¹	4.080	
F (000)	1472.0	
Crystal size/mm ³	0.2 imes 0.2 imes 0.02	
Radiation	MoK α ($\lambda = 0.71073$)	
2\Theta range for data collection/°	6.99 to 58.322	
Index ranges	$-12 \le h \le 10, -26 \le k \le 25, -12 \le l \le 22$	
Reflections collected	18864	
Independent reflections	7336 [$R_{int} = 0.0316$, $R_{sigma} = 0.0471$]	
Data/restraints/parameters	7336/1/400	
Goodness-of-fit on F ²	1.026	
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0440, wR_2 = 0.0949$	
Final R indexes [all data]	$R_1 = 0.0696, wR_2 = 0.1039$	
Largest diff. peak/hole / e Å ⁻³	1.22/-0.96	
CCDC	2092640	

Table S1 Crystal data and structure refinement for fac-Re(CO)₃(L₄)Cl

Atoms	Length/Å
Re1-Cl1	2.464(2)
Re1-N1	2.179(4)
Re1-C1	1.884(9)
Re1-C2	1.936(6)
O1-C1	1.112(6)
O2-C2	1.113(6)
O3-C15	1.218(7)
O4-C15	1.328(8)
O4-C16	1.453(7)
N1-C3	1.350(6)
N1-C8	1.315(6)

Table S2 Selected length (Å) for fac-Re(CO)₃(L₄)Cl of the asymmetric unit. The atoms were numbered like on the molecular views.

Table S3 Selected Angles (°) for fac-Re(CO)₃(L₄)Cl of the asymmetric unit. The atoms were numbered like on the molecular views.

Atoms	Angles(°)
N1-Re1-Cl1	82.41(11)
N1-Re1-N1	75.1(2)
C1-Re1-Cl1	174.5(3)
C1-Re1-N1	93.3(3)
C2-Re1-Cl	94.20(19)
C2-Re1-N1	172.9(2)
C2-Re1-N1 ¹	98.3(2)
C2-Re1-C2 ¹	88.2(4)
C3-N1-Re1	115.3(3)
C8-N1-Re1	126.4(3)
O1-C1-Re1	178.6(11)
O2-C2-Re1	178.7(6)

5. Cyclic voltammetry

Fig. S10. Cyclic voltammograms of rhenium(I) complexes (0.5 mmol/L) in NMP under a nitrogen atmosphere at a scanning rate of 100 mV/s after 100 successive cycles for fac-Re(CO)₃(L₁)Cl (A), fac-Re(CO)₃(L₃)Cl (B), fac-Re(CO)₃(L₄)Cl (C) and fac-Re(CO)₃(L₅)Cl (D).

6. Electrochromic investigation

Fig. S11. UV-vis absorption spectra of ECDs based on *fac*-Re(CO)₃(L₁)Cl (A), and *fac*-Re(CO)₃(L₃)Cl (B) and *fac*-Re(CO)₃(L₄)Cl (C) and *fac*-Re(CO)₃(L₅)Cl (D)with concentration of 25 mmol/L at different applied potentials.

Fig. S12. Transmittance spectra of the ECDs based on *fac*-Re(CO)₃(L₁)Cl (A), *fac*-Re(CO)₃(L₃)Cl (B), *fac*-Re(CO)₃(L₅)Cl (C) and *fac*-Re(CO)₃(L₄)Cl (G) and in bleached state (black) and colored state (red). Electrochromic switching of the ECDs monitored at 676.5 nm for *fac*-Re(CO)₃(L₁)Cl (D), at 671 nm for *fac*-Re(CO)₃(L₃)Cl (E), at 703.5 nm for *fac*-Re(CO)₃(L₅)Cl (F), and at 663 nm and 874.5 nm between 0.0 and -2.2 V (H).

Fig. S13. Response time of ECDs based on *fac*-Re(CO)₃(L₁)Cl monitored at 676.5 nm between 0.0 and -2.2 V (A), *fac*-Re(CO)₃(L₃)Cl monitored at 671 nm between 0.0 and -2.4 V (B), *fac*-Re(CO)₃(L₅)Cl monitored at 703.5 nm between 0.0 and -2.2 V (C), and *f fac*-Re(CO)₃(L₄)Cl monitored at 874.5 nm between 0.0 and -2.2 V (D).

Fig. S14. Chronoamperometry curves and the corresponding in-situ transmittance curves and optical density versus charge density of the ECDs based on *fac*-Re(CO)₃(L₁)Cl monitored at 676.5 nm between 0.0 and -2.2 V (A and B), *fac*-Re(CO)₃(L₃)Cl monitored at 671 nm between 0.0 and -2.4 V (B and D), *fac*-Re(CO)₃(L₅)Cl monitored at 703.5 nm between 0.0 and -2.2 V (E and F), and *fac*-Re(CO)₃(L₄)Cl monitored at 874.5 nm between 0.0 and -2.2 V (G and H).

7. CIE L*a*b* coordinate values

Table S4 CIE L*a*b*	coordinate values	for the ECDs	based on	fac-Re((CO)	$_3(L_x)$)Cl
---------------------	-------------------	--------------	----------	---------	------	-----------	-----

Complexes	L*a*b* (Bleached state)	L*a*b* (Bleached state)
fac-Re(CO) ₃ (L ₁)Cl	46.4*-8.4* 4.5*	37.2* -8.8* -2.6*
fac-Re(CO) ₃ (L ₂)Cl	45.9*-9.1* 2.2*	31.2* -9.5* -0.6*
fac-Re(CO) ₃ (L ₃)Cl	46.8*-8.8* 4.6*	34.4* -9.8* -2.4*
fac-Re(CO) ₃ (L ₄)Cl	43.3*-9.0* 4.7*	35.5* -7.9* 1.3*
fac-Re(CO) ₃ (L ₅)Cl	46.9*-9.2* 2.7*	37.2* -8.3* 1.5*

8. Solid-state electrochromic devices

Fabrication all-solid-state electrochromic devices: A transparent gel electrolyte was obtained by mixing polymethyl methacrylate (PMMA, M_w : 120,000, 0.7 g), TBAP (0.8 g) and propylene carbonate (PC, 3.0 g) in dry acetonitrile (2 mL). *Fac*-Re(CO)₃(L₄)Cl(50 mmol/L) is added into mixture. The mixture was stirred rapidly at 50 °C until a gelation occurred. The mixture was coated on a new ITO-coated glass by a pulling method. Put another ITO, then the above two ITO glasses were bonded together and dried in a vacuum oven at 80 °C for 12 h to obtain allsolid-state electrochromic device.

Fig. S15. UV-vis absorption spectra of solid-state-ECDs based on fac-Re(CO)₃(L₄)Cl (A) at different applied potentials. (B) Photographs of solid-state-ECDs containing fac-Re(CO)₃(L₄)Cl in its bleached and colored states.(C) Transmittance vs. time curve when no applied voltage is applied after the solid-state-ECDs is colored. And electrochromic switching of the ECDs based on fac-Re(CO)₃(L₄)Cl monitored at 620 nm between 0.0 and -2.6 V(D)

9. Cyclic voltammetry and UV-vis absorption spectra

Fig. S16. Cyclic voltammograms of $\text{Re}(\text{CO})_5\text{Cl}$ (A) and ligand L_1 - L_5 (B) (0.5 mmol/L) in NMP under a nitrogen atmosphere at a scanning rate of 100 mV/s.

Fig. S17. Photograph of the ECD based on L_2 (A) and *fac*-Re(CO)₃(L₂)Cl (C) at an applied potential of 0.0 V, -2.4 V and returned to 0.0 V (C). UV-Vis absorption spectra of L_2 (B) and *fac*-Re(CO)₃(L₂)Cl (D) at an applied potential of 0.0 V, -2.4 V and returned to 0.0 V.