Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information for

Hydroborative reduction of amides to amines mediated by

$La(CH_2C_6H_4NMe_2-o)_3$

Fangcao Zhang,^a Chenjun Guo,^a Mingliang Gong,^c Hongzhen Xie,^{*,a} and Yunjie

Luo*,a,b

^a School of Materials Science and Chemical Engineering, Ningbo University, Ningbo

315211, P. R. China

^b Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of

Zhejiang Province, Ningbo 315211, P. R. China

^c The Barstow School Ningbo Campus, Ningbo 315201, P. R. China

*E-mail: luoyunjie@nbu.edu.cn

xiehongzhen@nbu.edu.cn

Table of Contents

1. Optimization of the reaction conditions2
2. ¹ H NMR monitoring of the reaction between La(CH ₂ C ₆ H ₄ NMe ₂ - <i>o</i>) ₃ and HBpin4
3. ¹ H NMR monitoring of the reaction between La(CH ₂ C ₆ H ₄ NMe ₂ - <i>o</i>) ₃ and secondary
amide9
4. ¹ H NMR monitoring of the reaction between La(CH ₂ C ₆ H ₄ NMe ₂ - <i>o</i>) ₃ and primary
amide11
5. Control experiments of N-Phenylbenzamide with pinacolborane catalyzed by
$La(CH_2C_6H_4NMe_2-o)_3.$
6. Proposed mechanism for the deoxygenative reduction of secondary and tertiary
amides16
7. ¹ H NMR spectrum of gram scale preparation
8. ¹ H NMR spectroscopy of amines20
9. References

Entry	Catalyst	[cat.]/[Amide] (mol%)	T/°C	t/h	Yield/% ^b
1	$La(CH_2C_6H_4NMe_2-o)_3$	5	25	4	95
2	$Y(CH_2C_6H_4NMe_2-o)_3$	5	25	4	54
3	$Sc(CH_2C_6H_4NMe_2-o)_3$	5	25	4	45
4	$La(CH_2C_6H_4NMe_2-o)_3$	3	25	4	56
5	$La(CH_2C_6H_4NMe_2-o)_3$	1	25	4	23

1. Table S1. Optimization of the reaction conditions for the reduction of N,Ndimethylbenzamide^{*a*}.

^{*a*}Reaction conditions: Amide (0.25 mmol), and HBpin (1.25 mmol, 5 equiv) in C_6D_6 (1 mL total volume). ^{*b*}yields of amine products calculated by integration vs a 1,3,5-trimethylbenzene internal standard.

Entry	Catalyst	[cat.]/[Amide] (mol%)	T(°C)	T(h)	Yield(%) ^b
1	$La(CH_2C_6H_4NMe_2-o)_3$	1	120	24	51
2	$La(CH_2C_6H_4NMe_2-o)_3$	3	120	24	75
3	$La(CH_2C_6H_4NMe_2-o)_3$	5	120	24	98
4	$La(CH_2C_6H_4NMe_2-o)_3$	5	25	24	-
5	La(CH ₂ C ₆ H ₄ NMe ₂ -o) ₃	5	60	24	23
6	La(CH ₂ C ₆ H ₄ NMe ₂ -o) ₃	5	80	24	52
7	La(CH ₂ C ₆ H ₄ NMe ₂ -o) ₃	5	100	24	87
8	La(CH ₂ C ₆ H ₄ NMe ₂ -o) ₃	5	100	24	85 ^c
9	La(CH ₂ C ₆ H ₄ NMe ₂ -o) ₃	5	100	24	71 ^d
10	La(CH ₂ C ₆ H ₄ NMe ₂ -o) ₃	5	100	24	35 ^e
11	$Y(CH_2C_6H_4NMe_2-o)_3$	5	120	24	79
12	Sc(CH ₂ C ₆ H ₄ NMe ₂ -o) ₃	5	120	24	71
13	No catalyst	-	120	36	52

1. Table S2. Optimization of the reaction conditions for the reduction of 4-Fluorobenzamide^{*a*}.

^{*a*}Reaction conditions: Amide (0.25 mmol), and HBpin (1.25 mmol, 5 equiv) in C_6D_6 (1 mL total volume). ^{*b*}yields of amine products calculated by integration vs a 1,3,5-trimethylbenzene internal standard. ^{*c*}8 equiv HBpin. ^{*d*}4 equiv HBpin. ^{*e*}2 equiv HBpin.

2. ¹H NMR monitoring of the reaction between La(CH₂C₆H₄NMe₂-*o*)₃ and HBpin.

Fig. S1. ¹H NMR spectrum of the reaction of $La(CH_2C_6H_4NMe_2-o)_3$ with 5 equiv HBpin for 1 h, • = $La(CH_2C_6H_4NMe_2-o)_{3-x}H_xHBpin_y, \star = B_2(OC(CH_3)_2C(CH_3)_2O)_3,$ • = excess HBpin, \checkmark = 1,3,5-trimethylbenzene (500 MHz, C₆D₆, 25 °C).

Fig. S2. ¹H NMR spectrum of the reaction of $La(CH_2C_6H_4NMe_2-o)_3$ with 3 equiv HBpin for 1 h, • = $La(CH_2C_6H_4NMe_2-o)_{3-x}H_xHBpin_y$, \checkmark = 1,3,5-trimethylbenzene (500 MHz, C₆D₆, 25 °C).

Fig. S3. ¹H NMR spectrum of the reaction of $La(CH_2C_6H_4NMe_2-o)_3$ with 1 equiv HBpin for 1 h, • = $La(CH_2C_6H_4NMe_2-o)_{3-x}H_xHBpin_y$, * = $La(CH_2C_6H_4NMe_2-o)_3$, = 1,3,5-trimethylbenzene (500 MHz, C₆D₆, 25 °C).

Fig. S4. The FT-IR spectra (KBr) of the insoluble materials $(La(CH_2C_6H_4NMe_2-o)_{3-x}H_xHBpin_y \text{ or } [LaH_3]_n \cdot HBpin_x)$ from the reaction of $La(CH_2C_6H_4NMe_2-o)_3$ with HBpin (5 eq).

Fig. S5. ¹H NMR spectrum of the hydrolysis product of the insoluble material with CD_3OD . \checkmark = 1,3,5-trimethylbenzene (500 MHz, CD_3OD , 25 °C).

Fig. S6. ¹H NMR spectrum of lanthanum tris-amidate complex. \bigcirc = residual n-hexane (500 MHz, C₆D₆, 25 °C).

Fig. S7. ¹H NMR spectrum of the reduction products of N-phenylbenzamide with HBpin using lanthanum tris-amidate complex or $La(CH_2C_6H_4NMe_2-o)_3$. $\checkmark = 1,3,5$ -trimethylbenzene (500 MHz, C₆D₆, 25 °C).

Fig. S8. ¹H NMR spectrum of lanthanum tris-amidate complex (500 MHz, CDCl₃, 25 °C).

Fig. S9. ¹H NMR spectrum of the reduction products of 4-methylbenzamide with HBpin using lanthanum tris-amidate complex or $La(CH_2C_6H_4NMe_2-o)_3$. $\checkmark = 1,3,5$ -trimethylbenzene (500 MHz, C₆D₆, 25 °C).

Fig. S10.¹³C NMR spectrum of lanthanum tris-amidate complex (126 MHz, CDCl₃, ppm): δ 169.24 (-OCN), 142.47 (-C₆H₄), 130.41 (-C₆H₄), 129.22 (-C₆H₄), 127.30 (-C₆H₄), 21.43 (-CH₃).

5. Control experiments of N-Phenylbenzamide with pinacolborane catalyzed by La(CH₂C₆H₄NMe₂-*o*)₃

Fig. S11. ¹H NMR spectrum of the products generated in situ from the reaction of Nphenylbenzamide with 2.4 equiv pinacolborane catalyzed by $La(CH_2C_6H_4NMe_2-o)_3$ (500 MHz, C₆D₆, 25 °C).

Fig. S12. ¹H NMR spectrum of the products generated in situ from the reaction of the resulting mixture with 2.6 equiv pinacolborane catalyzed by $La(CH_2C_6H_4NMe_2-o)_3$ (500 MHz, C₆D₆, 25 °C).

6. Proposed mechanism for the deoxygenative reduction of secondary and tertiary amides.

Scheme S1. Proposed mechanism for the deoxygenative reduction of secondary amides catalyzed by $La(CH_2C_6H_4NMe_2-o)_3$.

Scheme S2. Proposed mechanism for the deoxygenative reduction of tertiary amides catalyzed by $La(CH_2C_6H_4NMe_2-o)_3$.

7. ¹H NMR spectra of the products on gram-scale preparation.

Fig. S13. ¹H NMR spectrum of trimethylamine hydrochloride (400 MHz, CDCl₃, 25 °C, **1a**, Table 1).

Fig. S14. ¹H NMR spectrum of 2-phenylethan-1-amine hydrochloride (500 MHz, D_2O , 25 °C, 3n, Table 3).

8. ¹H NMR spectroscopy of amines.

All amide reduction products were characterized by ¹H NMR, and compared with the previous literature.

Fig. S15. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N,N-dimethylformamide catalyzed by 5 mol% $La(CH_2C_6H_4NMe_2-o)_3$ at 25 °C for 1 h. * = pinBCH_2C_6H_4NMe_2-o, \checkmark = 1,3,5-trimethylbenzene (400 MHz, C₆D₆, 25 °C, **1a**, Table 1).

Trimethylamine.¹ ¹H NMR (400 MHz, C₆D₆, ppm): δ 2.00 (s, 9H, -NCH₃).

Fig. S16. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N,N-diethylformamide catalyzed by 5 mol% $La(CH_2C_6H_4NMe_2-o)_3$ at 25 °C for 2 h. * = pinBCH_2C_6H_4NMe_2-o, \checkmark = 1,3,5-trimethylbenzene (400 MHz, C₆D₆, 25 °C, **1b**, Table 1).

N,*N*-*Diethylmethylamine*.² ¹H NMR (400 MHz, C₆D₆, ppm): δ 2.25 (d, *J* = 7.1 Hz, 4H, -N(CH₂CH₃)₂), 2.06 (s, 3H, -NCH₃), 0.95 (t, *J* = 7.1 Hz, 6H, -N(CH₂CH₃)₂).

Fig. S17. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N,N-dimethylacetamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-o)₃ at 25 °C for 2 h. * = pinBCH₂C₆H₄NMe₂-o, \checkmark = 1,3,5-trimethylbenzene (400 MHz, C₆D₆, 25 °C, **1c**, Table 1).

N,*N*-*Dimethylethanamine*.³ ¹H NMR (400 MHz, C₆D₆, ppm): δ 2.17 (d, *J* = 7.3 Hz, 2H, -NCH₂CH₃), 2.06 (s, 6H, -N(CH₃)₂), 0.93 (t, *J* = 7.2 Hz, 3H, -NCH₂CH₃).

Fig. S18. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of piperidine-1-carbaldehyde catalyzed by 5 mol% $La(CH_2C_6H_4NMe_2-o)_3$ at 25 °C for 1 h. * = pinBCH_2C_6H_4NMe_2-o, \checkmark = 1,3,5-trimethylbenzene (400 MHz, C₆D₆, 25 °C, **1d**, Table 1).

1-Methylpiperidine.⁴ ¹H NMR (400 MHz, C₆D₆, ppm): δ 2.18 (s, 4H, -NC₅H₁₀), 2.09 (s, 3H, -NCH₃), 1.51 - 1.43 (m, 4H, -NC₅H₁₀), 1.27 (s, 2H, -NC₅H₁₀).

Fig. S19. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N,N-dimethylbenzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-o)₃ at 25 °C for 4 h. * = pinBCH₂C₆H₄NMe₂-o, \checkmark = 1,3,5-trimethylbenzene (500 MHz, C₆D₆, 25 °C, **1e**, Table 1).

N,*N*-*Dimethylbenzylamine*.⁵ ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.30 (d, *J* = 7.4 Hz, 2H, -NCH₂*Ph*), 7.20 - 7.17 (m, 2H, -NCH₂*Ph*), 7.14 - 7.07 (m, 1H, -NCH₂*Ph*), 3.27 (s, 2H, -NC*H*₂Ph), 2.08 (s, 6H, -N(*CH*₃)₂).

Fig. S20. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N-allyl-N-methylbenzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-o)₃ at 60 °C for 1 h. * = pinBCH₂C₆H₄NMe₂-o, \checkmark = 1,3,5-trimethylbenzene (400 MHz, C₆D₆, 25 °C, **1f**, Table 1).

N-Allyl-N-Methylbenzylamine.³ ¹H NMR (400 MHz, C₆D₆, ppm): δ 7.33 (d, J = 7.5 Hz, 2H, -NCH₂*Ph*), 7.21 (t, J = 6.6 Hz, 2H, -NCH₂*Ph*), 7.13 (d, J = 7.0 Hz, 1H, -NCH₂*Ph*), 5.87 (ddt, J = 16.5, 10.2, 6.3 Hz, 1H, -NCH₂CHCH₂), 5.14 (dd, J = 17.2 Hz, 1.6 Hz, 1H, -NCH₂CHCH₂), 5.05 (dd, J = 10.2 Hz, 0.8 Hz, 1H, -NCH₂CHCH₂), 3.37 (s, 2H, -NCH₂Ph), 2.91 (d, J = 6.3 Hz, 2H, -NCH₂CHCH₂), 2.09 (s, 3H, -NCH₃).

Fig. S21. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N,N-dibenzylbenzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-o)₃ at 80 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-o, \checkmark = 1,3,5-trimethylbenzene (500 MHz, C₆D₆, 25 °C, **1g**, Table 1).

*Tribenzylamine.*⁶ ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.33 (d, J = 7.6 Hz, 6H, -NCH₂*Ph*), 7.19 - 7.16 (m, 6H, -NCH₂*Ph*), 7.07 (t, J = 7.3 Hz, 3H, -NCH₂*Ph*), 3.40 (s, 6H, -NCH₂Ph).

Fig. S22. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N,N-dibenzyl-4-methylbenzamide catalyzed by 5 mol% $La(CH_2C_6H_4NMe_2-o)_3$ at 80 °C for 24 h. * = pinBCH_2C_6H_4NMe_2-o, \checkmark = 1,3,5-trimethylbenzene (500 MHz, C₆D₆, 25 °C, **1h**, Table 1).

N,N-Dibenzyl(4-Methylbenzyl)Amine.⁶ ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.35 (d, J = 7.6 Hz, 4H, -NCH₂Ph), 7.27 (d, J = 7.8 Hz, 2H, -NCH₂PhCH₃), 7.20 - 7.18 (m, 4H, -NCH₂Ph), 7.08 (t, J = 7.3 Hz, 2H, -NCH₂Ph), 7.01 (d, J = 7.7 Hz, 2H, -NCH₂PhCH₃), 3.43 (s, 4H, -NCH₂Ph), 3.42 (s, 2H, -NCH₂PhCH₃), 2.14 (s, 3H, -NCH₂PhCH₃).

Fig. S23. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N,N-dibenzyl-4-methoxybenzamide catalyzed by 5 mol% $La(CH_2C_6H_4NMe_2-o)_3$ at 80 °C for 24 h. * = pinBCH_2C_6H_4NMe_2-o, \checkmark = 1,3,5-trimethylbenzene (500 MHz, C₆D₆, 25 °C, **1i**, Table 1).

N,N-Dibenzyl(4-Methoxybenzyl)Amine.⁶ ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.37 (d, J = 7.5 Hz, 4H, -NCH₂Ph), 7.26 (d, J = 8.5 Hz, 2H, -NCH₂PhOCH₃), 7.20 (t, J = 7.6 Hz, 4H, -NCH₂Ph), 7.10 (t, J = 7.3 Hz, 2H, -NCH₂Ph), 6.79 (d, J = 8.5 Hz, 2H, -NCH₂PhOCH₃), 3.45 (s, 4H, -NCH₂Ph), 3.41 (s, 2H, -NCH₂PhOCH₃), 3.38 (s, 3H, -NCH₂PhOCH₃).

Fig. S24. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N,N-dibenzyl-4-fluorobenzamide catalyzed by 5 mol% $La(CH_2C_6H_4NMe_2-o)_3$ at 80 °C for 24 h. * = pinBCH_2C_6H_4NMe_2-o, \checkmark = 1,3,5-trimethylbenzene (500 MHz, C₆D₆, 25 °C, **1j**, Table 1).

N,*N*-*Dibenzyl*(4-*Fluorobenzyl*)*Amine*.⁶ ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.28 (s, 4H, -NCH₂*Ph*), 7.12 (d, *J* = 37.5 Hz, 8H, -NCH₂*Ph*), 6.79 (s, 2H, -NCH₂*Ph*), 3.34 (s, 4H, -NCH₂Ph), 3.26 (s, 2H, -NCH₂PhF).

Fig. S25. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N,N-dibenzyl-2-fluorobenzamide catalyzed by 5 mol% $La(CH_2C_6H_4NMe_2-o)_3$ at 80 °C for 24 h. * = pinBCH_2C_6H_4NMe_2-o, \checkmark = 1,3,5-trimethylbenzene (500 MHz, C₆D₆, 25 °C, **1k**, Table 1).

N,*N*-*Dibenzyl*(2-*Fluorobenzyl*)*Amine*.⁷ ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.32 (d, *J* = 7.2 Hz, 4H, -NCH₂*Ph*), 7.16 (t, *J* = 7.5 Hz, 4H, -NCH₂*Ph*), 7.07 (t, *J* = 7.3 Hz, 4H, -NCH₂*Ph*), 6.91 - 6.87 (m, 2H, -NCH₂*Ph*), 3.54 (s, 2H, -NCH₂PhF), 3.41 (s, 4H, -NCH₂Ph).

Fig. S26. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N,N-dibenzyl-4-(trifluoromethyl)benzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-o)₃ at 80 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-o, \checkmark = 1,3,5-trimethylbenzene (500 MHz, C₆D₆, 25 °C, **11**, Table 1).

N,*N*-*Dibenzyl*(4-*Trifluoromethylbenzyl*)*Amine*.⁶ ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.37 (d, *J* = 8.1 Hz, 2H, -NCH₂*Ph*CF₃), 7.30 (d, *J* = 7.3 Hz, 4H, -NCH₂*Ph*), 7.23 (d, *J* = 8.0 Hz, 2H, -NCH₂*Ph*CF₃), 7.20 (t, *J* = 7.6 Hz, 4H, -NCH₂*Ph*), 7.11 (t, *J* = 7.4 Hz, 2H, -NCH₂*Ph*), 3.34 (s, 4H, -NCH₂Ph), 3.31 (s, 2H, -NCH₂PhCF₃).

Fig. S27. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N,N-dibenzylthiophene-2-carboxamide catalyzed by 5 mol% $La(CH_2C_6H_4NMe_2-o)_3$ at 80 °C for 24 h. * = pinBCH_2C_6H_4NMe_2-o, \checkmark = 1,3,5-trimethylbenzene (500 MHz, C₆D₆, 25 °C, **1m**, Table 1).

N,*N*-*Dibenzyl*-2-*Thiophenemethylamine*.⁶ ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.36 (d, J = 7.3 Hz, 4H, -NCH₂*Ph*), 7.19 - 7.12 (m, 4H, -NCH₂*Ph*), 7.06 (t, J = 7.0 Hz, 2H, -NCH₂*Ph*), 6.94 (d, J = 4.5 Hz, 1H, -NCH₂C₄H₃S), 6.72 (d, J = 13.1 Hz, 2H, -NCH₂C₄H₃S), 3.56 (s, 2H, -NCH₂C₄H₃S), 3.43 (s, 4H, -NCH₂Ph).

Fig. S28. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N,N-dibenzylfuran-2-carboxamide catalyzed by 5 mol% $La(CH_2C_6H_4NMe_2-o)_3$ at 80 °C for 24 h. * = pinBCH_2C_6H_4NMe_2-o, \checkmark = 1,3,5-trimethylbenzene (500 MHz, C₆D₆, 25 °C, **1n**, Table 1).

N,*N*-*Dibenzyl*-2-*Furanmethylamine*.⁶ ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.34 (d, *J* = 7.4 Hz, 4H, -NCH₂*Ph*), 7.16 (t, *J* = 7.6 Hz, 4H, -NCH₂*Ph*), 7.07 (t, *J* = 7.3 Hz, 2H, -NCH₂*Ph*), 6.14 - 6.08 (m, 1H, -NCH₂C₄*H*₃O), 6.00 (d, *J* = 3.0 Hz, 1H, -NCH₂C₄*H*₃O), 3.49 (s, 2H, -NCH₂C₄H₃O), 3.48 (s, 4H, -NCH₂Ph).

Fig. S29. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N,N-dibenzylisobutyramide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-o)₃ at 80 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-o, \checkmark = 1,3,5-trimethylbenzene (500 MHz, C₆D₆, 25 °C, **10**, Table 1).

N,*N*-*Dibenzyl-2-Methylpropan-1-Amine.*⁸ ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.32 (d, J = 6.8 Hz, 4H, -NCH₂*Ph*), 7.22 - 7.15 (m, 4H, -NCH₂*Ph*), 7.09 (d, J = 6.1 Hz, 2H, -NCH₂*Ph*), 3.38 (s, 4H, -NCH₂Ph), 2.07 (d, J = 5.4 Hz, 2H, -NCH₂CH(CH₃)₂), 1.69 (s, 1H, -NCH₂CH(CH₃)₂), 0.79 (d, J = 4.0 Hz, 6H, -NCH₂CH(CH₃)₂).

Fig. S30. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N,N-diphenylbenzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-o)₃ at 80 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-o, \checkmark = 1,3,5-trimethylbenzene (500 MHz, C₆D₆, 25 °C, **1p**, Table 1).

Fig. S31. GC-MS of 2,3-dimethylbutane-2,3-diol, phenylmethanol, diphenylamine and N-benzyl-N-phenylaniline.

Fig. S32. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N-methyl-N-phenylbenzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-o)₃ at 80 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-o, \checkmark = 1,3,5-trimethylbenzene (500 MHz, C₆D₆, 25 °C, 1q, Table 1).

Fig. S33. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N-phenylbenzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-o)₃ at 120 ^oC for 24 h. * = pinBCH₂C₆H₄NMe₂-o, \checkmark = 1,3,5-trimethylbenzene, • = pinBOCH₂C₆H₅ (400 MHz, C₆D₆, 25 °C, 2a, Table 2). *N-Benzyl-N-Phenyl-4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Amine.*⁹ ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.40 (d, *J* = 8.7 Hz, 2H, -*Ph*), 7.19 (d, *J* = 7.3 Hz, 2H, -*Ph*), 7.15

- 7.03 (m, 4H, -*Ph*), 7.00 (t, *J* = 7.3 Hz, 1H, -*Ph*), 6.77 (t, *J* = 7.3 Hz, 1H, -*Ph*), 4.71 (s, 2H, -NC*H*₂Ph), 1.08 (s, 12H, -NB*pin*).

Fig. S34. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N-(4-methoxyphenyl)benzamide catalyzed by 5 mol% $La(CH_2C_6H_4NMe_2-o)_3$ at 120 °C for 24 h. * = pinBCH_2C_6H_4NMe_2-o, \checkmark = 1,3,5-trimethylbenzene, \bigcirc = pinBOCH_2C_6H_5 (400 MHz, C_6D_6, 25 °C, 2b, Table 2).

N-*Benzyl*-*N*-(4-*Methoxyphenyl*)-4,4,5,5-*Tetramethyl*-1,3,2-*Dioxaborolan*-2-*Amine*.⁹ ¹H NMR (400 MHz, C₆D₆, ppm): δ 7.32 - 7.24 (m, 4H, -*Ph*), 7.13 (d, *J* = 7.7 Hz, 2H, -*Ph*), 7.03 (t, *J* = 7.4 Hz, 1H, -*Ph*), 6.66 (d, *J* = 9.1 Hz, 2H, -*Ph*), 4.73 (s, 2H, -NCH₂Ph), 3.26 (s, 3H, -NPhOCH₃), 1.11 (s, 12H, -NB*pin*).

Fig. S35. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N-(p-tolyl)benzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-o)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-o, \checkmark = 1,3,5-trimethylbenzene, • = pinBOCH₂C₆H₅ (400 MHz, C₆D₆, 25 °C, **2c**, Table 2). *N-Benzyl-N-(p-Tolyl)-4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Amine.*¹⁰ ¹H NMR (400 MHz, C₆D₆, ppm): δ 7.36 (d, J = 8.4 Hz, 2H, -*Ph*), 7.24 (d, J = 7.4 Hz, 2H, -*Ph*),

7.12 (t, J = 7.6 Hz, 2H, -Ph), 7.01 (t, J = 7.3 Hz, 1H, -Ph), 6.91 (d, J = 8.2 Hz, 2H, -

Ph), 4.76 (s, 2H, -NC*H*₂Ph), 2.04 (s, 3H, -NPhC*H*₃), 1.09 (s, 12H, -NB*pin*).

Fig. S36. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N-(4-chlorophenyl)benzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-o)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-o, \checkmark = 1,3,5-trimethylbenzene, \bullet = pinBOCH₂C₆H₅ (400 MHz, C₆D₆, 25 °C, 2d, Table 2). *N-Benzyl-N-(4-Chlorophenyl)-4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Amine.*¹⁰ ¹H NMR (400 MHz, C₆D₆, ppm): δ 7.15 -7.10 (m, 9H, -*Ph*), 4.62 (s, 2H, -NCH₂Ph), 1.05

(s, 12H, -NB*pin*).

Fig. S37. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N-(4-bromophenyl)benzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-o)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-o, \checkmark = 1,3,5-trimethylbenzene, \bullet = pinBOCH₂C₆H₅ (400 MHz, C₆D₆, 25 °C, **2e**, Table 2). *N-Benzyl-N-(4-Bromophenyl)-4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Amine.*¹¹ ¹H NMR (400 MHz, C₆D₆, ppm): δ 7.16 - 7.11 (m, 9H, -*Ph*), 4.62 (s, 2H, -NCH₂Ph),

1.05 (s, 12H, -NBpin).

Fig. S38. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N-(4-cyanophenyl)benzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂*o*)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-*o*, ▼ = 1,3,5-trimethylbenzene, ● = pinBOCH₂C₆H₅ (400 MHz, C₆D₆, 25 °C, **2f**, Table 2). *4-(Benzyl(4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-yl)Amino)Benzonitrile.* ¹H NMR (400 MHz, C₆D₆, ppm): δ 7.58 (d, *J* = 7.9 Hz, 2H, -*Ph*), 7.35 (d, *J* = 7.7 Hz, 2H, -*Ph*), 7.06 - 6.89 (m, 5H, -*Ph*), 4.57 (s, 2H, -NCH₂Ph), 1.08 (s, 12H, -NB*pin*).

Fig. S39. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N-(4-nitrophenyl)benzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-o)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-o, \checkmark = 1,3,5-trimethylbenzene, \bullet = pinBOCH₂C₆H₅ (400 MHz, C₆D₆, 25 °C, **2g**, Table 2). *N-Benzyl-N-(4-Nitrophenyl)-4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Amine.* ¹H NMR (400 MHz, C₆D₆, ppm): δ 7.82 (d, *J* = 9.4 Hz, 2H, -*Ph*), 7.14 - 7.03 (m, 7H, -*Ph*), 4.59 (s, 2H, -NCH₂Ph), 1.08 (s, 12H, -NB*pin*).

Fig. S40. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of 4-fluoro-N-phenylbenzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-o)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-o, ▼ = 1,3,5-trimethylbenzene, ● = pinBOCH₂C₆H₄F-p (500 MHz, C₆D₆, 25 °C, **2h**, Table 2). *N-(4-Fluorobenzyl)-N-Phenyl-4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Amine.*¹¹ ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.29 (d, J = 9.1 Hz, 2H, -*Ph*), 7.10 - 7.03 (m, 5H, -*Ph*), 6.90 (dd, J = 13.4, 7.2 Hz, 1H, -*Ph*), 6.79 (t, J = 7.0 Hz, 1H, -*Ph*), 4.61 (s, 2H, -NCH₂PhF), 1.10 (s, 12H, -NB*pin*).

Fig. S41. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of 2-fluoro-N-phenylbenzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-o)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-o, \checkmark = 1,3,5-trimethylbenzene, \bullet = pinBOCH₂C₆H₄F-o (500 MHz, C₆D₆, 25 °C, **2i**, Table 2). *N-(2-Fluorobenzyl)-N-Phenyl-4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Amine*.¹² ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.35 (d, J = 8.1 Hz, 2H, -*Ph*), 7.23 (dd, J = 14.9, 7.5 Hz, 1H, -*Ph*), 7.04 (t, J = 7.9 Hz, 2H, -*Ph*), 6.78 - 6.76 (m, 4H, -*Ph*), 4.85 (s, 2H, -NCH₂PhF), 1.08 (s, 12H, -NB*pin*).

Fig. S42. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N-phenyl-4-(trifluoromethyl)benzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-o)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-o, \checkmark = 1,3,5-trimethylbenzene, \bullet = pinBOCH₂C₆H₄CF₃-p (500 MHz, C₆D₆, 25 °C, **2j**, Table 2). *N-(4-(Trifluoromethyl)Benzyl)-N-Phenyl-4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-A-mine*. ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.26 (d, *J* = 24.3 Hz, 3H, -*Ph*), 7.14 - 7.03 (m, 4H, -*Ph*), 6.89 (d, *J* = 7.0 Hz, 1H, -*Ph*), 6.79 (s, 1H), 4.61 (s, 2H, -NCH₂PhCF₃), 1.09 (s, 12H, -NB*pin*).

Fig. S43. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of 4-chloro-N-phenylbenzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂*o*)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-*o*, ▼ = 1,3,5-trimethylbenzene, ● = pinBOCH₂C₆H₄Cl-*p* (400 MHz, C₆D₆, 25 °C, **2k**, Table 2). *N-(4-Chlorobenzyl)-N-Phenyl-4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Amine.*¹¹ ¹H NMR (400 MHz, C₆D₆, ppm): δ 7.33 (d, *J* = 7.9 Hz, 2H, -*Ph*), 7.12 - 7.06 (m, 2H, -*Ph*), 7.03 (d, *J* = 8.4 Hz, 2H, -*Ph*), 6.93 (d, *J* = 8.4 Hz, 2H, -*Ph*), 6.80 (t, *J* = 7.3 Hz, 1H, -*Ph*), 4.57 (s, 2H, -NCH₂PhCl), 1.08 (s, 12H, -NB*pin*).

Fig. S44. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of 4-methyl-N-phenylbenzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂o)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-o, ▼ = 1,3,5-trimethylbenzene, ● = pinBOCH₂C₆H₄Me-p (400 MHz, C₆D₆, 25 °C, **21**, Table 2). *N-(4-Methylbenzyl)-N-Phenyl-4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Amine.*¹¹ ¹H NMR (400 MHz, C₆D₆, ppm): δ 7.49 (d, *J* = 7.8 Hz, 2H, -*Ph*), 7.13 - 7.08 (m, 3H, -*Ph*), 6.94 (d, *J* = 7.9 Hz, 3H, -*Ph*), 6.80 (t, *J* = 7.3 Hz, 1H, -*Ph*), 4.77 (s, 2H, -NCH₂PhCH₃), 2.07 (s, 3H, -NCH₂PhCH₃), 1.09 (s, 12H, -NBpin).

Fig. S45. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of 4-methoxy-N-phenylbenzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-*o*)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-*o*, \checkmark = 1,3,5-trimethylbenzene, • = pinBOCH₂C₆H₄OMe-*p* (500 MHz, C₆D₆, 25 °C, **2m**, Table 2). *N-(4-Methoxybenzyl)-N-Phenyl-4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Amine.*¹¹ ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.40 (d, *J* = 8.3 Hz, 2H, -*Ph*), 7.16 - 7.03 (m, 5H, -*Ph*), 6.78 (td, *J* = 7.4, 0.8 Hz, 1H, -*Ph*), 6.68 (d, *J* = 3.6 Hz, 2H, -*Ph*), 4.68 (s, 2H, -NCH₂PhOCH₃), 3.32 (s, 3H, -NCH₂PhOCH₃), 1.11 (s, 12H, -NB*pin*).

Fig. S46. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N-phenylisobutyramide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-o)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-o, \checkmark = 1,3,5-trimethylbenzene, \bullet = pinBOCH₂CH(CH₃)₂ (500 MHz, C₆D₆, 25 °C, **2n**, Table 2). *N-Isobutyl-N-Phenyl-4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Amine.* ¹H NMR

(500 MHz, C_6D_6 , ppm): δ 7.35 (d, J = 8.0 Hz, 2H, -*Ph*), 7.15 - 7.10 (m, 2H, -*Ph*), 6.84 (t, J = 7.3 Hz, 1H, -*Ph*), 3.38 (d, J = 7.3 Hz, 2H, -NCH₂CH(CH₃)₂), 1.79 (dt, J = 13.6, 6.8 Hz, 1H, -NCH₂CH(CH₃)₂), 1.09 (s, 12H, -NB*pin*), 0.81 (d, J = 6.7 Hz, 6H, -NCH₂CH(CH₃)₂).

Fig. S47. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N-phenylacetamide catalyzed by 5 mol% $La(CH_2C_6H_4NMe_2-o)_3$ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-o, \checkmark = 1,3,5-trimethylbenzene, \bullet = pinBOCH₂CH₃ (500 MHz, C₆D₆, 25 °C, **20**, Table 2).

N-*Propyl*-*N*-*Phenyl*-4,4,5,5-*Tetramethyl*-1,3,2-*Dioxaborolan*-2-*Amine*.¹³ ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.34 (d, *J* = 7.9 Hz, 2H, -*Ph*), 7.17 - 7.12 (m, 2H, -*Ph*), 6.83 (t, *J* = 6.8 Hz, 1H, -*Ph*), 3.53 (q, *J* = 7.0 Hz, 2H, -NCH₂CH₃), 1.07 (s, 12H, -NB*pin*).

Fig. S48. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N-phenylthiophene-2-carboxamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-*o*)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-*o*, \checkmark = 1,3,5-trimethylbenzene, • = pinBOCH₂C₄H₃O (500 MHz, C₆D₆, 25 °C, **2p**, Table 2). *N-(Furan-2-Ylmethyl)-N-Phenyl-4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Amine*. ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.40 (d, *J* = 7.8 Hz, 2H, -*Ph*), 7.11 - 7.07 (m, 3H, -*Ph*), 6.82 - 6.77 (m, 1H, -NCH₂C₄H₃O), 6.03 (d, *J* = 9.2 Hz, 2H, -NCH₂C₄H₃O), 4.63 (s, 2H, -NCH₂C₄H₃O), 1.08 (s, 12H, -NB*pin*).

Fig. S49. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N-phenylfuran-2-carboxamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂*o*)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-*o*, ▼ = 1,3,5-trimethylbenzene, ● = pinBOCH₂C₄H₃S (500 MHz, C₆D₆, 25 °C, **2q**, Table 2). *N-(Thiophen-2-Ylmethyl)-N-Phenyl-4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Amine.* ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.39 (d, *J* = 7.9 Hz, 2H, -*Ph*), 7.09 - 7.04 (m, 2H, -*Ph*), 6.83 (d, *J* = 6.0 Hz, 1H, -NCH₂C₄H₃S), 6.78 (t, *J* = 7.3 Hz, 1H, -*Ph*), 6.73 (d, *J* = 2.5 Hz, 1H, -NCH₂C₄H₃S), 6.66 (d, *J* = 5.0 Hz, 1H, -NCH₂C₄H₃S), 4.78 (s, 2H, -

NC*H*₂C₄H₃S), 1.11 (s, 12H, -NB*pin*).

Fig. S50. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N-methylbenzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-o)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-o, \checkmark = 1,3,5-trimethylbenzene, \bullet = pinBOCH₂C₆H₅ (500 MHz, C₆D₆, 25 °C, **2r**, Table 2). *N-Benzyl-N,4,4,5,5-Pentamethyl-1,3,2-Dioxaborolan-2-Amine.*³ ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.20 (d, *J* = 7.2 Hz, 2H, -*Ph*), 7.16 (t, *J* = 7.5 Hz, 2H, -*Ph*), 7.07 (t, *J* =

7.1 Hz, 1H, -*Ph*), 4.06 (s, 2H, -NCH₂Ph), 2.50 (s, 3H, -NCH₃), 1.13 (s, 12H, -NB*pin*).

Fig. S51. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N,4-dimethylbenzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-*o*)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-*o*, \checkmark = 1,3,5-trimethylbenzene, • = pinBOCH₂C₆H₄Me-*p* (500 MHz, C₆D₆, 25 °C, **2s**, Table 2). *N-(4-Methylbenzyl)-N,4,4,5,5-Pentamethyl-1,3,2-Dioxaborolan-2-Amine*. ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.14 (d, *J* = 7.9 Hz, 2H, -*Ph*), 6.99 (d, *J* = 7.8 Hz, 2H, -*Ph*),

4.08 (s, 2H, -NCH₂PhCH₃), 2.53 (s, 3H, -NCH₃), 1.14 (s, 12H, -NBpin).

Fig. S52. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of 4-methoxy-N-methylbenzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-*o*)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-*o*, \checkmark = 1,3,5-trimethylbenzene, • = pinBOCH₂C₆H₄OMe-*p* (500 MHz, C₆D₆, 25 °C, 2t, Table 2). *N-(4-Methoxybenzyl)-N,4,4,5,5-Pentamethyl-1,3,2-Dioxaborolan-2-Amine.*¹⁴ ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.12 (d, *J* = 8.5 Hz, 2H, -*Ph*), 6.75 (d, *J* = 8.6 Hz, 2H, -*Ph*), 4.02 (s, 2H, -NCH₂PhOCH₃), 3.41 (s, 3H, -NCH₂PhOCH₃), 2.50 (s, 3H, -NCH₃), 1.14 (s, 12H, -NB*pin*).

Fig. S53. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N-methyl-4-(trifluoromethyl)benzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-o)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-o, \checkmark = 1,3,5-trimethylbenzene, \bullet = pinBOCH₂C₆H₄CF₃-p (500 MHz, C₆D₆, 25 °C, **2u**, Table 2). *N-(4-(Trifluoromethyl)benzyl)-N,4,4,5,5-Pentamethyl-1,3,2-Dioxaborolan-2-Amine*. ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.36 (d, *J* = 8.0 Hz, 2H, -*Ph*), 7.09 (d, *J* = 7.9 Hz, 2H, -*Ph*), 3.97 (s, 2H, -NCH₂PhCF₃), 2.43 (s, 3H, -NCH₃), 1.13 (s, 12H, -NB*pin*).

Fig. S54. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of 4-fluoro-N-methylbenzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-o)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-o, \checkmark = 1,3,5-trimethylbenzene, \bullet = pinBOCH₂C₆H₄F-p (500 MHz, C₆D₆, 25 °C, **2v**, Table 2). *N-(4-Fluorobenzyl)-N,4,4,5,5-Pentamethyl-1,3,2-Dioxaborolan-2-Amine*. ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.03 (dd, J = 8.6, 5.5 Hz, 2H, -*Ph*), 6.82 (t, J = 8.7 Hz, 2H, -*Ph*), 3.96 (s, 2H, -NCH₂PhF), 2.46 (s, 3H, -NCH₃), 1.13 (s, 12H, -NB*pin*).

Fig. S55. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N-methylfuran-2-carboxamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-o)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-o, \checkmark = 1,3,5-trimethylbenzene, \bullet = pinBOCH₂C₄H₃O (500 MHz, C₆D₆, 25 °C, **2w**, Table 2). *N-(Furan-2-Ylmethyl)-N,4,4,5,5-Pentamethyl-1,3,2-Dioxaborolan-2-Amine*. ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.14 - 7.10 (m, 1H, -NCH₂C₄H₃O), 6.11 - 6.08 (m, 1H, -NCH₂C₄H₃O), 6.00 (d, *J* = 3.1 Hz, 1H, -NCH₂C₄H₃O), 4.05 (s, 2H, -NCH₂C₄H₃O),

2.57 (s, 3H, -NC*H*₃), 1.11 (s, 12H, -NB*pin*).

Fig. S56. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N-methylthiophene-2-carboxamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-*o*)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-*o*, \checkmark = 1,3,5-trimethylbenzene, \bullet = pinBOCH₂C₄H₃S (500 MHz, C₆D₆, 25 °C, **2x**, Table 2). *N-(Thiophen-2-Ylmethyl)-N,4,4,5,5-Pentamethyl-1,3,2-Dioxaborolan-2-Amine.* ¹H NMR (500 MHz, C₆D₆, ppm): δ 6.92 (d, *J* = 4.3 Hz, 1H, -NCH₂C₄H₃S), 6.72 (d, *J* = 5.1 Hz, 2H, -NCH₂C₄H₃S), 4.19 (s, 2H, -NCH₂C₄H₃S), 2.55 (s, 3H, -NCH₃), 1.13 (s, 12H, -NB*pin*).

Fig. S57. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of azepan-2-one catalyzed by 5 mol% $La(CH_2C_6H_4NMe_2-o)_3$ at 120 °C for 24 h. * = pinBCH_2C_6H_4NMe_2-o, \checkmark = 1,3,5-trimethylbenzene (400 MHz, C₆D₆, 25 °C, **2y**, Table 2).

I-(4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Yl)Azepane.³ ¹H NMR (400 MHz, C₆D₆, ppm): δ 3.16 (t, *J* = 6.0 Hz, 4H, -NC₆H₁₂), 1.57 (s, 4H, -NC₆H₁₂), 1.50 - 1.44 (m, 4H, -NC₆H₁₂), 1.12 (s, 12H, -NB*pin*).

Fig. S58. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of N-ethylacetamide catalyzed by 5 mol% $La(CH_2C_6H_4NMe_2-o)_3$ at 120 °C for 24 h. * = pinBCH_2C_6H_4NMe_2-o, \checkmark = 1,3,5-trimethylbenzene (400 MHz, C₆D₆, 25 °C, **2z**, Table 2).

N,*N*-*Diethyl*-4,4,5,5-*Tetramethyl*-1,3,2-*Dioxaborolan*-2-*Amine*.³ ¹H NMR (400 MHz, C₆D₆, ppm): δ 3.01 (q, *J* = 7.1 Hz, 4H, -N(CH₂CH₃)₂), 1.10 (s, 12H, -NB*pin*), 1.00 - 0.98 (m, 6H, -N(CH₂CH₃)₂).

Fig. S59. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of 4-methylbenzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-*o*)₃ at 120 ^oC for 24 h. * = pinBCH₂C₆H₄NMe₂-*o*, \checkmark = 1,3,5-trimethylbenzene, \bullet = pinBOCH₂C₆H₄Me-*p* (500 MHz, C₆D₆, 25 °C, **3a**, Table3). *N,N-Di*(4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Yl)(4-Methylbenzyl)Amine. ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.43 (d, *J* = 7.8 Hz, 2H, -*Ph*), 7.02 (d, *J* = 7.8 Hz, 2H, -*Ph*), 4.48 (s, 2H, -NCH₂PhCH₃), 2.14 (s, 2H, -NCH₂PhCH₃), 1.02 (s, 24H, -N(Bpin)₂).

Fig. S60. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of 2-methylbenzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-*o*)₃ at 120 ^oC for 24 h. * = pinBCH₂C₆H₄NMe₂-*o*, \checkmark = 1,3,5-trimethylbenzene, • = pinBOCH₂C₆H₄Me-*o* (400 MHz, C₆D₆, 25 °C, **3b**, Table3). *N,N-Di(4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Yl)(2-Methylbenzyl)Amine*. ¹H NMR (400 MHz, C₆D₆, ppm): δ 7.51 (d, *J* = 7.6 Hz, 1H, -*Ph*), 7.14 (s, 1H, -*Ph*), 7.03 (t, *J* = 7.3 Hz, 1H, -*Ph*), 6.95 (d, *J* = 7.3 Hz, 1H, -*Ph*), 4.47 (s, 2H, -NCH₂PhCH₃),

2.10 (s, 3H, -NCH₂PhCH₃), 1.01 (s, 24H, -N(Bpin)₂).

Fig. S61. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of 4-methoxybenzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-*o*)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-*o*, \checkmark = 1,3,5-trimethylbenzene, \bullet = pinBOCH₂C₆H₄OMe-*p* (500 MHz, C₆D₆, 25 °C, **3c**, Table3). *N,N-Di*(4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Yl)(4-Methoxybenzyl)Amine. ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.47 (d, *J* = 8.5 Hz, 2H, -*Ph*), 6.81 (d, *J* = 8.5 Hz, 2H, -*Ph*), 4.46 (s, 2H, -NCH₂PhOCH₃), 3.39 (s, 3H, -NCH₂PhOCH₃), 1.03 (s, 24H, -N(Bpin)₂).

Fig. S62. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of benzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-o)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-o, \checkmark = 1,3,5-trimethylbenzene, \bullet = pinBOCH₂C₆H₅ (500 MHz, C₆D₆, 25 °C, 3d, Table3).

N, N-Di(4, 4, 5, 5-Tetramethyl-1, 3, 2-Dioxaborolan-2-Yl)Benzylamine. ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.52 (d, J = 7.2 Hz, 2H, -*Ph*), 7.22 (t, J = 7.3 Hz, 1H, -*Ph*), 7.09 (dd, J = 13.7, 7.2 Hz, 2H, -*Ph*), 4.52 (s, 2H, -NCH₂Ph), 1.02 (s, 24H, -N(Bpin)₂).

Fig. S63. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of benzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-o)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-o, \checkmark = 1,3,5-trimethylbenzene, \bullet = pinBOCH₂C₆H₄F-p (500 MHz, C₆D₆, 25 °C, **3e**, Table3).

N,N-Di(4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Yl)(4-Fluorobenzyl)Amine. ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.38 (dd, J = 8.3, 5.7 Hz, 2H, -Ph), 6.86 (t, J = 8.7 Hz, 2H, -Ph), 4.40 (s, 2H, -NCH₂PhF), 1.01 (s, 24H, -N(Bpin)₂).

Fig. S64. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of 2-fluorobenzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-*o*)₃ at 120 ^oC for 24 h. * = pinBCH₂C₆H₄NMe₂-*o*, \checkmark = 1,3,5-trimethylbenzene, \bullet = pinBOCH₂C₆H₄F-*o* (400 MHz, C₆D₆, 25 °C, **3f**, Table3). *N,N-Di*(4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Yl)(2-Fluorobenzyl)Amine. ¹H NMR (400 MHz, C₆D₆, ppm): δ 7.48 (t, *J* = 7.2 Hz, 1H, -*Ph*), 7.01 (t, *J* = 6.6 Hz, 1H, -*Ph*), 6.90 (dd, *J* = 14.4, 8.4 Hz, 1H, -*Ph*), 6.80 (t, *J* = 8.6 Hz, 1H, -*Ph*), 4.67 (s, 2H, -NCH₂PhF), 1.03 (s, 24H, -N(Bpin)₂).

Fig. S65. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of 4-chlorobenzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-*o*)₃ at 120 ^oC for 24 h. * = pinBCH₂C₆H₄NMe₂-*o*, \checkmark = 1,3,5-trimethylbenzene, \bullet = pinBOCH₂C₆H₄Cl-*p* (500 MHz, C₆D₆, 25 °C, **3g**, Table3). *N,N-Di(4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Yl)(4-Chlorobenzyl)Amine.* ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.31 (d, *J* = 8.3 Hz, 2H, -*Ph*), 7.15 (d, *J* = 8.4 Hz, 2H, -*Ph*), 4.36 (s, 2H, -NCH₂PhCl), 1.01 (s, 24H, -N(B*pin*)₂).

Fig. S66. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of 4-nitrobenzamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-*o*)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-*o*, \checkmark = 1,3,5-trimethylbenzene, • = pinBOCH₂C₆H₄NO₂-*p* (500 MHz, C₆D₆, 25 °C, **3h**, Table3). *N,N-Di(4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Yl)(4-Nitrobenzyl)Amine*. ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.93 (d, *J* = 8.8 Hz, 2H, -*Ph*), 7.29 (d, *J* = 8.8 Hz, 2H, -*Ph*), 4.36 (s, 2H, -NCH₂PhNO₂), 1.03 (s, 24H, -N(Bpin)₂).

Fig. S67. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of thiophene-2-carboxamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-o)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-o, \checkmark = 1,3,5-trimethylbenzene, \bullet = pinBOCH₂C₄H₃S (500 MHz, C₆D₆, 25 °C, **3i**, Table3). *N*,*N*-Di(4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Yl)-2-Thiophenemethylamine. ¹H

NMR (500 MHz, C_6D_6 , ppm): δ 7.05 (s, 1H, -*Ph*), 6.91 (d, J = 5.1 Hz, 1H, -*Ph*), 6.78 (t, J = 4.0 Hz, 1H, -*Ph*), 4.62 (s, 2H, -NCH₂C₄H₃S), 1.04 (s, 24H, -N(Bpin)₂).

Fig. S68. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of 2-naphthamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-o)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-o, \checkmark = 1,3,5-trimethylbenzene, \bullet = pinBOCH₂C₁₀H₇ (500 MHz, C₆D₆, 25 °C, **3j**, Table3).

N,N-Di(4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Yl)-1-(Naphthalen-2-

Yl)*Methanamine*. ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.98 (s, 1H, -*Ph*), 7.71 (d, *J* = 7.3 Hz, 1H, -*Ph*), 7.67 (d, *J* = 1.1 Hz, 2H, -*Ph*), 7.66 - 7.64 (m, 1H, -*Ph*), 7.29 - 7.23 (m, 2H, -*Ph*), 4.70 (s, 2H, -NCH₂C₁₀H₇), 1.03 (s, 24H, -N(B*pin*)₂).

Fig. S69. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of acetamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-o)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-o, \checkmark = 1,3,5-trimethylbenzene, (400 MHz, C₆D₆, 25 °C, 3k, Table3).

N,*N*-*Di*(4,4,5,5-*Tetramethyl*-1,3,2-*Dioxaborolan*-2-*Yl*)*Methylamine*. ¹H NMR (400 MHz, C₆D₆, ppm): δ 2.95 (s, 3H, -NCH₃), 1.05 (s, 24H, -N(B*pin*)₂).

Fig. S70. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of hexanamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-o)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-o, \checkmark = 1,3,5-trimethylbenzene, \bullet = pinBO(CH₂)₅CH₃ (500 MHz, C₆D₆, 25 °C, **31**, Table3).

 $N,N-Di(4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Yl)Hexylamine.^{15}$ ¹H NMR (500 MHz, C₆D₆, ppm): δ 3.34 (t, J = 7.1 Hz, 2H, -N(CH₂)₅CH₃), 1.70 - 1.61 (m, 2H, - N(CH₂)₅CH₃), 1.28 - 1.23 (m, 6H, -N(CH₂)₅CH₃), 1.06 (s, 24H, -N(Bpin)₂), 0.83 (t, J = 6.9 Hz, 3H, -N(CH₂)₅CH₃).

Fig. S71. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of cyclohexanecarboxamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-*o*)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-*o*, ▼ = 1,3,5-trimethylbenzene, ● = pinBOCH₂C₆H₁₁ (400 MHz, C₆D₆, 25 °C, **3m**, Table3). *N,N-Di*(4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Yl)-1-Cyclohexyl-Methenamine. ¹H NMR (400 MHz, C₆D₆, ppm): δ 3.21 (d, *J* = 7.1 Hz, 2H, -NCH₂C₆H₁₁), 2.73 (t, *J* = 7.2 Hz, 1H, -NCH₂C₆H₁₁), 1.82 (d, *J* = 12.5 Hz, 2H, -NCH₂C₆H₁₁), 1.67 (s, 4H, -NCH₂C₆H₁₁), 1.59 (d, *J* = 13.5 Hz, 4H, -NCH₂C₆H₁₁), 1.06 (s, 24H, -N(Bpin)₂).

Fig. S72. Quantitative ¹H NMR spectrum of the products of the deoxygenative reduction of 2-phenylacetamide catalyzed by 5 mol% La(CH₂C₆H₄NMe₂-*o*)₃ at 120 °C for 24 h. * = pinBCH₂C₆H₄NMe₂-*o*, ▼ = 1,3,5-trimethylbenzene, ● = pinBO(CH₂)₂C₆H₅ (500 MHz, C₆D₆, 25 °C, **3n**, Table3). *N,N-Di*(4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Yl)-2-Phenethylamine. ¹H NMR (500 MHz, C₆D₆, ppm): δ 7.18 (d, *J* = 20.1 Hz, 2H, -*Ph*), 7.12 (t, *J* = 7.5 Hz, 2H, -*Ph*), 7.05 - 7.00 (m, 1H, -*Ph*), 3.53 (t, *J* = 7.2 Hz, 2H, -N(CH₂)₂Ph), 2.88 (t, *J* = 7.2 Hz, 2H, -N(CH₂)₂Ph), 1.01 (s, 24H, -N(Bpin)₂).

Fig. S73. Quantitative ¹H NMR spectrum of the products generated in situ from the reaction of 4-Fluorobenzamide with HBpin at 120 °C for 36 h without using the catalyst. $\checkmark = 1,3,5$ -trimethylbenzene. (400 MHz, C₆D₆, 25 °C). *N,N-Di*(4,4,5,5-Tetramethyl-1,3,2-Dioxaborolan-2-Yl)(4-Fluorobenzyl)Amine. ¹H NMR (400 MHz, C₆D₆, ppm): δ 7.40 (dd, J = 8.4 Hz, 5.7 Hz, 2H, -*Ph*), 6.87 (t, J = 8.7 Hz, 2H, -*Ph*), 4.43 (s, 2H, -NCH₂PhF), 1.01 (s, 24H, -N(Bpin)₂).

9. References

- (1) M. Itazaki, K. Ueda, Nakazawa, Angew. Chem. Int. Ed., 2009, 48, 3313-3316.
- (2) L. Jing, X. N. Han, H. Y. Zhou, Y. Han, C. F. Chen, J. Org. Chem., 2020, 85, 11465-11474.
- (3) C. Yu, C. J. Guo, L. H. Jiang, M. L. Gong, Y. J. Luo, *Organometallics*, 2021, **40**, 1201-1206.
- (4) W. L. Xie, M. D. Zhao, C. M. Cui, Organometallics, 2013, 32, 7440-7444.
- (5) T. J. Steiman, C. Uyeda, J. Am. Chem. Soc., 2015, 137, 6104-6110.
- (6) P. Q. Ye, Y. L. Shao, X. Z. Ye, F. J. Zhang, R. H. Li, J. N. Sun, B. H. Xu, J. X. Chen, Org. Lett., 2020, 22, 1306-1310.
- (7) D. J. Hale, L. J. Murphy, R. McDonald, M. J. Ferguson, L. Turculet, *ChemCatChem*, 2019, 11, 3818-3827.
- (8) Y. Corre, V. Rysak, M. Nagyházi, D. Kalocsai, X. Trivelli, J. P. Djukic, F. Agbossou-Niedercorn, C. Michon, *Eur. J. Org. Chem.*, 2020, **39**, 6212-6220.
- (9) Y. C. Lin, E. Hatzakis, S. M. McCarthy, K. D. Reichl, T. Y. Lai, H. P. Yennawar,
 A. T. Radosevich, J. Am. Chem. Soc., 2017, 139, 6008-6016.
- (10) C. Ghosh, S. Kim, M. R. Mena, J. H. Kim, R. Pal, C. L. Rock, T. L. Groy, M. H.
 Baik, R. J. Trovitch, J. Am. Chem. Soc., 2019, 141, 15327-15337.
- (11) V. K. Pandey, S. N. R. Donthireddy, A. Rit, *Chem. Asian. J.*, 2019, 14, 3255-3258.
- (12) M. Arrowsmith, M. S. Hill, G. Kociok-Köhn, Chem. Eur. J., 2013, 19, 2776-2783.
- (13) K. A. Gudun, M. Segizbayev, A. Adamov, P. N. Plessow, K. A. Lyssenko, M. P. Balanay, A. Y. Khalimon, *Dalton Trans.*, 2019, 48, 1732-1746.
- (14) R. K. Sahoo, N. Sarkar, S. Nembenna, Angew. Chem. Int. Ed., 2021, 60, 11991-

12000.

(15) J. C. Babón, M. A. Esteruelas, I. Fernández, A. M. López, E. Oñate, Organometallics, 2020, **39**, 3864-3872.