Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary Information

Two-photon fluorescence imaging of mitochondria viscosity with water-soluble pyridinium inner salts

Bin Fang,^{‡a,b} Beilin Zhang,^{‡a,b} Rongxiu Zhai, Limin Wang,^b Yang Ding,^b Huizi Li,^d Hua Bai,^{*b} Zhenhua Wang,^{*b} Bo Peng,^b Lin Li,^{b,c} Li Fu^{*a}

^dDepartment of Outpatient, PLA Rocket Force Characteristic Medical Center, 16 Xinwai Avenue, Beijing100088, P. R. China.

‡These authors contributed equally to this work.

^aSchool of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, P. R. China. E-mail: <u>fuli@nwpu.edu.cn</u>

^bFrontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, P. R. China. E-mail: <u>iamhbai@nwpu.edu.cn;</u> <u>iamzhwang@nwpu.edu.cn</u>

^cThe Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, P. R. China

Supplemental Figures and Tables

Scheme S1. The synthesis routes of target compounds.

Figure S0. Crystal structures of Mito-Q. All H atoms are omitted for clarity.

Figure S1. The linear absorption and emission spectra upon excited at 466 nm, 472 nm, 464 nm of **Mito-Z**, **Mito-H**, **Mito-Q** in different solvents with different polarities with a concentration of 10 μ M.

Figure S2. Frontier molecular orbitals of the sensors (HOMO-LUMO energy levels were determined from DFT optimized geometries). The probes were calculated with time-dependent density functional theory (TD-DFT) at the B3LYP/6-31G(d,p) level using Gaussian 09.

Figure S3. Changes of absorption spectra with variation of solution viscosity in a water-glycerol system. (1) water (2) water/glycerol (9 : 1, v/v), (3) water/glycerol (8 : 2, v/v), (4) water/glycerol (7 : 3, v/v), (5) water/glycerol (6 : 4, v/v) (6) water/glycerol (5 : 5, v/v), (7) water/glycerol (4 : 6, v/v), (8) water/glycerol (3 : 7, v/v), (9) water/glycerol (2 : 8, v/v), (10) water/glycerol (1 : 9, v/v), and (11) 99% glycerol.

Figure S4. Changes of fluorescence spectra with variation of solution viscosity in water-glycerol media of the sensors with increasing solution viscosity: (1) water (2) water/glycerol (9 : 1, v/v), (3) water/glycerol (8 : 2, v/v), (4) water/glycerol (7 : 3, v/v), (5) water/glycerol (6 : 4, v/v) (6) water/glycerol (5 : 5, v/v), (7) water/glycerol (4 : 6, v/v), (8) water/glycerol (3 : 7, v/v), (9) water/glycerol (2 : 8, v/v), (10) water/glycerol (1 : 9, v/v), and (11) 99% glycerol.

Figure S5. (A) The linear relationship of fluorescence intensity of compound **Mito-Q** with different viscosity. I and I_0 represent the fluorescence intensities of **Mito-Q** in glycerol/water mixture and water, respectively (water/glycerol = 80:20, 70:30, 60:40, 50:50, 20:80, 10:90, 1:99).

Fluo. intensities at 595 nm (Mito-Z) σ (Fluo.) Fluo. intensit 595 nm (Mito-Z)		nsities at (Mito-H)	σ (Fluo.)	Fluo. int 595 nm	tensities at n (Mito-Q)	σ (Fluo.)		
31.46	31.56		58.85	58.95		104.1	102.3	
31.23	34.01		58.26	58.01		105.2	104.6	
33.11	33.16		58.97	59.16		104.8	105.1	
32.45	32.58	0.764	60.12	60.32	0.780	105.3	105.1	0 700
33.56	33.46	0.764	59.85	60.06	0.762	105.5	104.8	0.732
32.98	32.12		60.22	59.65		104.9	105.2	
32.45	33.25		58.34	59.39		104.6	104.9	
32.68	32.96		58.19	60.23		104.9	105.1	

Figure S6. Multi-recorded fluorescence spectra of blank measurement. Insert: the data of standard deviation (σ) of blank measurement from fluorescence spectra.

Figure S7. The percentage of fluorescence quantum yields of the sensors with increasing solution viscosity: (1) water (2) water/glycerol (9 : 1, v/v), (3) water/glycerol (8 : 2, v/v), (4) water/glycerol (7 : 3, v/v), (5) water/glycerol (6 : 4, v/v) (6) water/glycerol (5 : 5, v/v), (7) water/glycerol (4 : 6, v/v), (8) water/glycerol (3 : 7, v/v), (9) water/glycerol (2 : 8, v/v), (10) water/glycerol (1 : 9, v/v), and (11) 99% glycerol.

Figure S8. Fluorescence lifetimes of the sensors in different viscosity media. (1) water, (2) water/glycerol (6 : 4, v/v), (3) water/glycerol (3 : 7, v/v), (4) 99% glycerol.

Figure S9. Two-photon (TP) action cross-section spectra of the sensors with variation of solution viscosity in the wavelength region of 740-1000 nm. And TP action cross-section spectra of the sensors with variation of solution viscosity at 880nm, 900 nm, 900 nm.

Figure S10. Absorption spectra and plot of intensity against the concentration of the sensors in pure PBS buffer (pH = 7.4), respectively.

Figure S11. The changes of emission intensity of the sensors (10 μ M) in PBS-buffer (10 mM) at various pH. (I₀ is the emission intensity with pH at 7.40 and I represent the emission intensity at other pH values).

Figure S12. Time evolution of UV-*vis* absorption spectra of the targeting compounds in PBS buffers (pH = 7.40).

Figure S13. MTT assay of HepG2 cells treated with the sensors at different concentrations for 24 h.

Figure S14. Real time monitoring images under OP fluorescence microscopy using Mito-Q (1 uM). Scale bar =20 μ m

Figure S15. One-photon confocal laser fluorescence microscopy images of HepG2 cells treated with **Mito-Q** (10 μ M). Scale bar =20 μ m

Figure S16. Determination of intercellular localization of Mito-Q by confocal microscopy. Hela cells were incubated with Mito-Q for 30 min, and then co-incubated with Nuc-red for 15 min, ER tracker for 30 min, Sir-tubulin for 30 min and lysotracker for 30 min, respectively. The scale bars represent 20 µm.

Figure S17. One- and two-photon fluorescence images of living Hela cells incubated with Mito-Q (10 μ M) for 30 min. Scale bar =20 μ m.

Figure 18. Mitochondrial membrane potential (MMP) changes in Hela cells with treatment by (-), CCCP (+), nystatin (+) and monensin (+), respectively. Scale bar = 20 μ m. (B) Histogram of the changes in the mitochondrial membrane potential in Hela cell treated with (-), CCCP (+), nystatin (+) and monensin (+), respectively. Data reference is the mean of three replicate ± SD.

Figure S19. (A) TP fluorescence images of the 3D multicellular spheroids of HepG2 cells incubated with 10 μ M **Mito-Q**, 30 min. (B) The TP Z-stack images were taken for 0-110 μ m. (C) The TP 3D Z-stack images of an intact spheroid; (bottom), λ_{em} = 550-630 nm and λ_{ex} = 900 nm. (D) 3D fluorescent intensity with **Mito-Q**.

Figure S20. Fresh Tissue sections from brain, liver, spleen and heart (10 μ m) incubated with probe **Mito-Q** for 30 min, Scale bar = 100 μ m.

Characterization spectra

Figure S21. IR spectra of the probes.

Figure S22. ¹H NMR spectrum of **Mito-Z** (400 MHz, 298 K, *d*₆-DMSO).

Figure S23. ¹H NMR spectrum of Mito-H (400 MHz, 298 K, *d*₆-DMSO).

Figure S24. ¹H NMR spectrum of Mito-Q (400 MHz, 298 K, *d*₆-DMSO).

Figure S25. ¹³C NMR spectrum of Mito-Z (100 MHz, 298 K, *d*₆-DMSO).

Figure S26. ¹³C NMR spectrum of Mito-H (100 MHz, 298 K, *d*₆-DMSO).

Figure S27. ¹³C NMR spectrum of Mito-Q (100 MHz, 298 K, *d*₆-DMSO).

Figure S28. HR-MS spectrum of Mito-Z.

Figure S29. HR-MS spectrum of Mito-H.

Figure S30. HR-MS spectrum of Mito-Q.

Supporting Tables

Compound	Mito-Q
Empirical formula	$C_{20}H_{26}N_2O_5S, H_2O$
Formula weight	424.50
Temperature	296(2) K
Wavelength	0.71073 Å
space group	<i>P</i> 2 ₁ /n
Crystal system	monoclinic
a/Å	17.617(5)
b/Å	13.441(5)
c/Å	8.825(3)
β/(°)	100.752(4)
V/Å ³	2053.0(12)
Z	4
<i>D_c</i> /Mg m ⁻³	1.373
µ/mm ⁻¹	0.198
F(000)	904
Final R indices [I>2 <i>o</i> (I)]	$R_1 = 0.0488,$
	wR ₂ = 0.1563
Goodness-of-fit on F ²	1.091

Table S1. Crystal data and structure refinement for Mito-Q.

Table S2. Photophysical data of the target compounds in different solvents.

Mito-Z

Solvents	λex ^[a]	λem ^[b]	$\Delta V^{[c]}$	Log _{emax}	$\Phi^{[d]}$	Brightness (εΦ) ^[e]
PBS	466	600	134	2.13	0.012	0.026
DMSO	485	606	121	2.08	0.018	0.037
ACN	476	600	124	2.09	0.014	0.029
EtOH	485	594	109	2.04	0.026	0.053
THF	480	595	115	2.06	0.015	0.031
EA	465	589	124	2.09	0.010	0.021

Solvents	λex ^[a]	λem ^[b]	$\Delta V^{[c]}$	max Logε	$\Phi^{[d]}$	Brightness (εΦ) ^[e]
PBS	472	597	125	3.88	0.016	0.062
DMSO	485	609	124	3.94	0.023	0.091
ACN	479	601	122	4.03	0.018	0.073
EtOH	490	595	105	3.99	0.034	0.136
THF	482	593	111	3.85	0.019	0.073
EA	468	580	112	3.72	0.012	0.045
Mito-Q						
Solvents	λex ^[a]	λem ^[b]	ΔV ^[c]	max Logɛ	Φ ^[d]	Brightness (εΦ) ^[e]
Solvents PBS	_{λex} ^[a] 464	_{λem} ^[b]	∆v ^[c] 129	Loge ^{max}	Φ ^[d] 0.019	Brightness (εΦ) ^[e] 0.074
Solvents PBS DMSO	λex ^[a] 464 485	_{λem} ^[b] 593 606	Δν ^[c] 129 121	Logε ^{max} 3.88 3.93	Φ ^[d] 0.019 0.032	Brightness (εΦ) ^[e] 0.074 0.126
Solvents PBS DMSO ACN	λex ^[a] 464 485 475	λem ^[b] 593 606 598	∆v ^[c] 129 121 123	Loge ^{max} 3.88 3.93 3.92	ф ^[d] 0.019 0.032 0.022	Brightness (εΦ) ^[e] 0.074 0.126 0.086
Solvents PBS DMSO ACN EtOH	 λex^[a] 464 485 475 484 	λem ^[b] 593 606 598 595	Δν ^[c] 129 121 123 111	Loge ^{max} 3.88 3.93 3.92 3.97	 ⊕^[d] 0.019 0.032 0.022 0.042 	Brightness (εΦ) ^[e] 0.074 0.126 0.086 0.167
Solvents PBS DMSO ACN EtOH THF	 λex^[a] 464 485 475 484 486 	λem ^[b] 593 606 598 595 595	Δν ^[c] 129 121 123 111 109	Loge ^{max} 3.88 3.93 3.92 3.97 3.46	(d) 0.019 0.032 0.022 0.042 0.021	Brightness (εΦ) ^[e] 0.074 0.126 0.086 0.167 0.073

Mito-H

^[a]Peak position of the longest absorption band in nm. ^[b]Peak position of SPEF, excited at the absorption maximum in nm.^[c]Stokes' shift in nm. ^[d]Quantum yields determined by using rhodamine (RhB) as standard. ^[d]Brightness($\epsilon\Phi$) is proportional to the product of the extinction coefficient (ϵ , at the relevant excitation wavelength, 10⁴) and the fluorescence quantum yield (Φ).

Table S3. Calculated linear absorption properties (nm), excitation energy(eV), oscillator strengths and major contribution for the target compounds .

Cmpds	λ(nm)	E(ev)	f	Composition	Character
Mito-Z	486	2.55	0.01455	100→101 (H→L) (0.64)	ICT
Mito-H	490	2.53	0.01575	104→105 (H→L) (0.64)	ICT
Mito-Q	484	2.56	0.01836	108→109 (H→L) (0.64)	ICT

Table S4. The reported structurally similar probes and their sensingproperties

Structures	Targeting	Comments	Ref.
Mito-Lyso	Mitochondria	Indicator of mitochondrial membrane potential (MPP)	²⁰¹⁸ Anal. Chem.
mNVP-B: R=-OAc; mNVP-G: R=-OMe; mNVP-R: R=-N(CH ₂) ₄ .	Cell Membrane	Fluorescence trackers for the outer ccell membrane	²⁰²⁰ ACS Appl.Bio Mater.
QCD-B	Mitochondria	Reveal Mitochondrial Nucleoprotein Dynamics with Reactive Oxygen Species Regulation	²⁰²⁰ Angew. Chem. Int. Ed.
	Mitochondria	Autophagy Modulators for Cancer Therapy	²⁰²⁰ Angew. Chem. Int. Ed.
N ASCP-SO	Mitochondria	Visually for mitochondria uptake and retention	2020 Chem.Commun.

Commands for theoretical calculation of target molecules

Mito-Z:

%nproc=6

%chk=1.chk

%mem=6000MB

opt b3lyp/6-31g scf=xqc

Mito-Z

01

С	6.99749400	1.03942200	-0.24319600
Н	7.14286300	1.58666100	0.54415300
Н	7.38224600	1.50740800	-1.00064500
С	5.49930900	0.90221700	-0.46891200
Н	5.13268000	1.77529300	-0.67817800
Н	5.34952000	0.32809500	-1.23541800
С	4.76089500	0.33220900	0.72250100
Н	5.10358300	-0.55262500	0.92096700
Н	4.91490100	0.89524900	1.49678500
С	2.45245900	1.13465700	1.00759800
Н	2.78118800	1.79651600	1.57318900
С	1.11293900	1.07247400	0.74968400
Н	0.54337500	1.69892600	1.13371200
С	0.58345900	0.07878700	-0.08709500
С	1.50565500	-0.80735100	-0.64984300
Н	1.20792100	-1.47403800	-1.22587100
С	2.83194800	-0.70818000	-0.36958800
Н	3.42502900	-1.31342000	-0.75269700
С	-0.83329400	-0.08266900	-0.35370200

Н	-1.10118600	-0.86307900	-0.78462600
С	-1.78127500	0.79488500	-0.03191000
н	-1.49232000	1.59339800	0.34647600
С	-3.21553900	0.64297400	-0.20477400
С	-4.06413800	1.72444000	0.00929400
Н	-3.69101600	2.54743800	0.23291000
С	-5.43093100	1.62601100	-0.09635900
н	-5.95479200	2.38406200	0.02732200
С	-6.04886300	0.40084200	-0.38699600
С	-5.19179100	-0.69475300	-0.61149800
Н	-5.55954000	-1.52172900	-0.82199900
С	-3.83137800	-0.57173400	-0.52812700
н	-3.30056700	-1.31726500	-0.69106000
С	-8.29660500	1.41302600	-0.28363900
н	-7.94268000	1.99930200	0.40383000
н	-9.16986800	1.10711000	0.00822400
С	-8.03721400	-1.04306500	-0.66131500
Н	-7.56824900	-1.48543600	-1.38540500
Н	-8.95422600	-0.90624900	-0.94367600
С	-8.02887100	-1.94638500	0.54789400
Н	-8.32659400	-2.82968000	0.27810600
Н	-7.11655300	-2.02859300	0.86756600
Ν	3.30511800	0.25005300	0.45240300
Ν	-7.41574900	0.26264700	-0.42314400
0	7.36555000	-1.37622300	-1.07394200
0	7.50541100	-0.98895400	1.28862000
0	9.26232900	-0.20335300	-0.16976700
0	-8.84532100	-1.50013700	1.61775300
Н	-9.61158700	-1.76867600	1.50647800

S	7.86122600	-0.50089800	-0.03097400
Н	-8.40862700	1.96928900	-1.19079000

--link1--

%nproc=6

%chk=1.chk

%mem=6000MB

td=(singlets,nstates=50,root=1) b3lyp/6-31g(d) scf=xqc guess=read geom=allcheck

Mioto-H:

%nproc=6

%chk=1.chk

%mem=6000MB

opt b3lyp/6-31g scf=xqc

Mioto-H

01

С	-7.29981100	-1.12809100	-0.09328900
н	-7.44572800	-1.53696000	0.77392200
Н	-7.66424100	-1.72605000	-0.76441500
С	-5.80151700	-0.99834100	-0.32266100
н	-5.41472700	-1.88600900	-0.37660500
Н	-5.65201400	-0.55935400	-1.17385000
С	-5.09182900	-0.21852900	0.76263400
н	-5.45476100	0.67941800	0.80420000
н	-5.24587900	-0.64536900	1.61956100
С	-2.77236600	-0.91022500	1.20504400
н	-3.09611400	-1.47364500	1.87119600

С	-1.43074200	-0.86332900	0.95495300	
Н	-0.85453700	-1.40295900	1.44598300	
С	-0.90893000	-0.01454700	-0.03259200	
С	-1.84020200	0.74291400	-0.74768400	
Н	-1.54738400	1.30864100	-1.42527900	
С	-3.16819600	0.66365100	-0.46915200	
Н	-3.76750500	1.18202300	-0.95593000	
С	0.50807000	0.13038000	-0.30726400	
Н	0.76670800	0.83210500	-0.86151100	
С	1.46843700	-0.65891500	0.16921000	
Н	1.18986000	-1.38784600	0.67452900	
С	2.90177500	-0.50711400	-0.01127600	
С	3.76837700	-1.51776000	0.39259100	
Н	3.40838100	-2.29890300	0.74863600	
С	5.13434500	-1.40873600	0.28668300	
Н	5.67122900	-2.12317300	0.54301200	
С	5.73210500	-0.23734100	-0.20103200	
С	4.85690500	0.78527200	-0.61767200	
Н	5.21126000	1.57244000	-0.96152800	
С	3.49812200	0.64838200	-0.52947400	
Н	2.95510600	1.34367500	-0.82243300	
С	7.99766500	-1.16783100	0.09724400	
Н	7.64547200	-1.63666800	0.87038600	
Н	8.86040000	-0.79779200	0.34243100	
С	8.18912500	-2.15171000	-1.02561600	
Н	7.33355700	-2.41494500	-1.36983000	
н	8.65397000	-2.92564300	-0.69685000	
н	8.70394400	-1.74352500	-1.72495900	

С	7.69531800	1.18237600	-0.69485500
Н	7.22824000	1.48518000	-1.48862700
Н	8.61884400	1.01979700	-0.93985300
С	7.65163200	2.27724100	0.34322200
Н	7.93572900	3.10831300	-0.06938500
Н	6.73333700	2.39244500	0.63431200
Ν	-3.63420000	-0.15147000	0.49841400
Ν	7.09637600	-0.07735000	-0.24520200
0	-7.70343400	1.10306200	-1.32616700
0	-7.86980800	1.11901700	1.06617500
0	-9.58957200	0.05919500	-0.25670400
0	8.46116200	2.03686100	1.48217100
Н	9.22350600	2.29937400	1.33527900
S	-8.19677400	0.40660200	-0.15517200

--link1--

%nproc=6

%chk=1.chk

%mem=6000MB

td=(singlets,nstates=50,root=1) b3lyp/6-31g(d) scf=xqc guess=read geom=allcheck

Mito-Q:

%nproc=8 %chk=1.chk %mem=8000MB # opt td(singlets,nstates=6,root=1) b3lyp/6-31g Mito-Q

С	7.93355600	-2.08929900	0.44455400
н	7.08766900	-2.48349600	0.70844700
н	8.42566700	-2.75758700	-0.05849700
С	7.66249400	-0.91046400	-0.45150500
н	8.50420000	-0.47561400	-0.65555600
н	7.28967700	-1.23451700	-1.28640900
С	7.22001300	2.50996700	-0.17986300
н	6.29790700	2.61898000	-0.45719500
н	7.46894100	3.29354200	0.33462600
С	7.32586700	1.29638800	0.69781200
н	8.26154300	1.13598000	0.89702900
н	6.87390700	1.47817500	1.53652900
С	5.39407900	-0.10378700	0.05894400
С	4.51101000	0.81479100	0.65600100
н	4.85827700	1.53442300	1.13350100
С	3.15394800	0.67381400	0.55049300
н	2.60074000	1.30082700	0.95568400
С	2.57560000	-0.39465900	-0.15369100
С	3.44914100	-1.32351900	-0.71491600
н	3.09780400	-2.04870500	-1.17852200
С	4.81316200	-1.20184000	-0.60721300
н	5.36156900	-1.85435500	-0.97865400
С	1.13952000	-0.53451000	-0.34113700
н	0.86646900	-1.19462600	-0.93606100
С	0.17013400	0.16922300	0.23861100
Н	0.42205700	0.79747700	0.87586700
С	-1.24257200	0.03865400	-0.04026900

0 1

С	-1.75870200	-0.70697400	-1.11040400
н	-1.17763300	-1.17432100	-1.66608600
С	-3.10813100	-0.75576700	-1.34872300
н	-3.43033900	-1.24867600	-2.06831700
С	-3.50747300	0.62281500	0.49020400
н	-4.11050000	1.07635800	1.03461100
С	-2.18255300	0.69842500	0.75756300
Н	-1.89130700	1.19834800	1.48560400
С	-5.43768400	-0.15885400	-0.80486200
н	-5.59886500	-0.46048400	-1.71215900
н	-5.81735800	0.72888300	-0.71080100
С	-6.11667800	-1.10228400	0.16797800
н	-5.93831400	-0.80366000	1.07292200
н	-5.73192300	-1.98692300	0.06786100
С	-7.62133200	-1.19264600	-0.03415000
н	-7.97068300	-1.88726000	0.54566500
н	-7.79620400	-1.45899700	-0.95030200
Ν	6.75448900	0.07616900	0.10906200
Ν	-3.96979700	-0.09912800	-0.55347200
0	-8.21672700	1.21049000	-0.80827100
0	-7.96062000	0.83137900	1.54135900
0	-9.89817600	-0.02936800	0.40053800
S	-8.49554000	0.31674900	0.29722900
0	8.04287400	2.43497700	-1.33376100
н	7.77091100	2.96460200	-1.89828800
0	8.66406800	-1.76461800	1.60267000
Н	9.41984600	-1.52536100	1.39085900

References:

- 1. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.
- 2. A. D. Becke, Density-functional thermochemistry. III. The role of exactexchange, *J. Chem. Phys.*, 1993, **98**, 5648-5652.
- 3. T. G. Gray, C. M Rudzinski, E. E. Meyer, R. H. Holm, D. G. Nocera, Spectroscopic and photophysical properties of hexanuclear rhenium(III) chalcogenide clusters. *J Am. Chem. Soc.*, 2003, **125**, 4755-4770.