Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

# **Electronic Supplementary Information**

# Synthesis of benzimidazole/triphenylamine-based compounds, their evaluation of bioactivities and insilico study with receptor tyrosine kinases

Mani Arulkumar,<sup>a</sup> Kai Yang,<sup>a,b</sup>\* Neng Wang,<sup>a</sup> Sakayanathan Penislusshiyan,<sup>c</sup> Thayumanavan Palvannan,<sup>c</sup> Karthick Ramalingam,<sup>d</sup> Fuming Chen,<sup>d</sup> Shi-He Luo,<sup>a,\*</sup> Yong-Jun Zhou<sup>a</sup> and Zhao-Yang Wang<sup>a,\*</sup>

<sup>a</sup> School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China.

<sup>b</sup> College of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China.

<sup>c</sup> Laboratory of Bioprocess and Engineering, Department of Biochemistry, Periyar University, Salem 636 011, Tamil Nadu, India

<sup>d</sup> Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Provincial Engineering Technology Research Center for Wastewater Management and Treatment, School of Environment, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, P. R. China.

#### \* Corresponding author

Zhao-Yang Wang, E-mail: wangzy@scnu.edu.cn Fax: (+86)-020-3931-0187; Tel: (+86)-020-3931-0258 Shi-He Luo, E-mail: pinky\_r@163.com Kai Yang, E-mail: kai\_yangyang@126.com

### **Table of Contents**

| Synthesis details of compounds AL-1 ~ AL-7[1]                                                              |
|------------------------------------------------------------------------------------------------------------|
| <sup>1</sup> H and <sup>13</sup> C NMR spectra of compounds AL-1 ~ AL-7 (Figures S1 ~ S12)[5]              |
| The value of $logIC_{50}$ and regression coefficient (R <sup>2</sup> ) associated with the first reduction |
| potential of the synthesized compounds (Table S1)[11]                                                      |
| The ADME properties (drug-likeness) properties of AL-1 and the selected PBI-based                          |
| ligands ( <b>Table S2</b> )[12]                                                                            |
| Structure of the docked compounds (Figure S13)[13]                                                         |
| 3D and 2D of docked pose for the interaction of AL-1 with the WT EGFR (1M17) and                           |
| the mutant EGFR (4RJ5) (Figure S14)[14]                                                                    |

| The binding free energies, $\Delta G$ bind (kcal/mol) of the AL-1 and the selected cor | npounds |
|----------------------------------------------------------------------------------------|---------|
| against RTKs calculated in MM-GBSA (Table S3)                                          | [15]    |
| MD simulation pose (Figures S15 ~ S18)                                                 | [16]    |
| RMSF for the RTKs complexes with AL-1 (Figure S19)                                     | [18]    |
| Interactions and total number of specific contacts with WT and mutant RTKs (           | Figures |
| S20 ~ S22)                                                                             | [19]    |
| Radii of gyration for the RTKs complexes with AL-1 (Figure S23)                        | [22]    |
| References                                                                             | [23]    |

## Synthesis details of compounds AL-1 ~ AL-7

**Experimental procedure of AL-1** 



The combination of copper acetate and the base system was used to produce **AL-1** by reacting 2-aminobenzimidazole **1** with 4-(diphenylamino)phenylboronic acid **2**.

2-Aminobenzimidazole **1** (1.0 mmol) was dissolved in methanol (4 mL) and mixed well. Et<sub>3</sub>N (2.0 mmol) was added and followed by copper acetate (0.5 mmol, 0.5 equiv.), and then 4-(diphenylamino)phenylboronic acid **2** (1.1 mmol) was added. The contents were stirred at room temperature (r.t., 25 °C) for 6 hours until the reaction substrate consumed utterly. The progress of the reaction was monitored by thin-layer chromatography (TLC). After the reaction was finished, the reaction mixture was extracted with ethyl acetate, neutralized with NaHCO<sub>3</sub>, and washed with brine solution. After the organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. Column chromatography was used to purify the desired product **AL-1**.

#### **Experimental procedure of AL-2**



The **AL-2** was synthesized using a simple sulfonylation reaction as the reported method in the literature.<sup>[1]</sup>

The mixture of 1.25 mmol (1.25 equiv.) of *p*-toluenesulfonyl chloride (**3**), 0.4 mmol (0.4 equiv.) of 4-dimethylaminopyridine (4-DMAP) and 1.25 mmol (1.25 equiv.) of Et<sub>3</sub>N as catalysts were added in 15 mL of dry  $CH_2Cl_2$  at room temperature (25 °C) and under N<sub>2</sub> atmosphere. After complete dissolving of the mixture, 1.0 mmol (1.0 equiv.) of 2-aminobenzimidazole **1** was added and mixed well. The progress of the reaction was monitored by TLC. After the reaction was finished, the reaction mixture was neutralized with Na<sub>2</sub>CO<sub>3</sub>, and

washed with brine. After the organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, the solvent was evaporated. Finally, recrystallization was carried out using methanol as a solvent to get **AL-2**.

#### **Experimental procedure of AL-3**



According to the reported procedure,<sup>[2]</sup> compound **AL-3** was synthesized. The solution containing 1.0 mmol of **1** (1.0 equiv.), 1.0 mmol of di-tert-butyl dicarbonate (1.0 equiv.), and triethylamine (0.6 mL, 4.37 mmol) in dry THF (2.4 mL) was allowed to stir well at room temperature (25 %) for 5 hours. Then, the organic layer of reaction crude portioned between AcOEt (20 mL) and NaHCO<sub>3</sub> saturated solution (20 mL) was extracted with brine (20 mL). The obtained organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated *in vacuo*. From typical silica gel flash chromatography, **AL-3** was obtained with good purity.

#### **Experimental procedure of AL-4**



Boc protected aminobenzimidazole, **AL-3** (1.0 mmol, 1.0 equiv.) was dissolved in 2 mL of pyridine. After adding 2.0 mmol of **3** (2.0 equiv.), the mixture was stirred well at 80  $^{\circ}$ C for 4.5 hours. After the consumption of the initial reactants, the reaction was stopped by adding water to give white solid. After a filtration, the resulting solid was recrystallised with aqueous ethanol to give the desired compound **AL-4**.

#### **Experimental procedure of AL-5**



A solution of **1** (3.0 mmol, 1.0 equiv.) and **3** (9.0 mmol, 3.0 equiv.) in anhydrous pyridine (10 mL) was stirred at 70  $^{\circ}$ C for 1.5 hours. The reaction was stopped and the reaction mixture was allowed to cool to room temperature (25  $^{\circ}$ C). The distilled ice water was poured into reaction mixture until the precipitate was formed. After a filtration, the resulting solid was recrystallised with aqueous ethanol to give the desired compound **AL-5**.

#### **Experimental procedure of AL-6**



(1*H*-benzo[d]imidazol-2-yl)methanamine **4** (2.0 mmol, 1.0 equiv.), pyridine (10 mmol, 5.0 equiv.), and 4-DMAP (0.2 mmol, 0.1 equiv.) were dissolved in 2 mL mixed solvent of DCM:DMF (1:1) and mixed well at 0 °C. The solution of **3** (2.2 mmol, 1.1 equiv.) in 2 mL of DCM:DMF (1:1) was added drop by drop to the above solution. The resulting mixture was stirred at room temperature (25 °C) overnight. After the completion of the reaction, the reaction mixture was quenched with H<sub>2</sub>O (15 mL) and extracted with ethylacetate (3 × 15 mL). Then, the organic layer washed with brine solution and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. After filtration and evaporation of the solvents under reduced pressure, the desired product was purified by preparatory column chromatography wth PE : EA (1:2) to give the desired compound **AL-6**.

#### **Experimental procedure of AL-7**



According to the reported procedure,<sup>[3]</sup> **AL-7** was formed by the reaction between 4bromo-N,N-diphenylaniline (5) and DMSO using a catalytic system containing CuI, K<sub>2</sub>CO<sub>3</sub>, and *L*-proline.

Under a N<sub>2</sub> atmosphere, 4-bromo-*N*,*N*-diphenylaniline **5** (2.0 mmol, 1.0 equiv.), DMSO (2.8 mmol, 1.4 equiv.), CuI (0.05 mmol.), K<sub>2</sub>CO<sub>3</sub> (1.0 equiv.), and *L*-proline were added to a Schlenk tube. The resulting mixture was allowed to stir for 30 minutes at 100 °C. After the completion of the reaction, the reaction mixture was quenched with H<sub>2</sub>O (15 mL) and extracted with ethylacetate (3  $\times$  15 mL). The organic layers were combined and washed with brine solution, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. After filtration and evaporation of the solvents under reduced pressure, the crude product was purified by column chromatography on silica gel to afford the desired product **AL-7**.



NMR Spectra for All Compounds AL-1 ~ AL-7

Figure S1. <sup>1</sup>H NMR spectrum of AL-1.



Figure S2. <sup>13</sup>C NMR spectrum of AL-1.



Figure S4. <sup>13</sup>C NMR spectrum of AL-2.







Figure S6. <sup>1</sup>H NMR spectrum of AL-4.



Figure S8. <sup>1</sup>H NMR spectrum of AL-5.







Figure S12. <sup>1</sup>H NMR spectrum of AL-7.

| Comp.          | First reduction | $\log IC_{50}$ |        |         |        |        |  |
|----------------|-----------------|----------------|--------|---------|--------|--------|--|
|                |                 | A549           | H446   | SPC-A-1 | MCF-7  | HepG2  |  |
| AL-1           | 1.10            | 1.4158         | 1.3953 | 1.1607  | 1.1934 | 1.2455 |  |
| AL-2           | 0.96            | 2.0000         | 1.8584 | 1.9051  | 2.0000 | 2.0000 |  |
| AL-3           | 0.93            | 2.0000         | 2.0000 | 2.0000  | 2.0000 | 2.0000 |  |
| AL-4           | 1.05            | 2.0000         | 2.0000 | 1.9956  | 2.0000 | 2.0000 |  |
| AL-5           | 1.01            | 1.8600         | 1.7594 | 2.0000  | 2.0000 | 2.0000 |  |
| AL-6           | 0.8             | 2.0000         | 2.0000 | 2.0000  | 2.0000 | 2.0000 |  |
| AL-7           | 0.82            | 2.0000         | 1.8674 | 1.8688  | 2.0000 | 1.9544 |  |
| R <sup>2</sup> | -               | 0.4065         | 0.3462 | 0.2666  | 0.3326 | 0.3023 |  |

**Table S1.** The value of  $logIC_{50}$  and regression coefficient ( $\mathbb{R}^2$ ) associated with the firstreduction potential of the synthesized compounds.

| Comp.   | MW     | DonorHB | AccptHB | QPlogPo/w | QPP<br>MDCK | CNS | Rule of<br>Five |
|---------|--------|---------|---------|-----------|-------------|-----|-----------------|
| OMe-PBI | 224.26 | 0       | 2.25    | 3.43      | 2935.19     | 1   | 0               |
| 1PBI    | 194.23 | 0       | 1.5     | 3.36      | 2926.66     | 1   | 0               |
| OH-PBI  | 210.23 | 1       | 2.25    | 2.59      | 810.51      | 0   | 0               |
| AL-1    | 376.46 | 2       | 2.5     | 5.88      | 957.85      | 0   | 1               |

 Table S2. The ADME properties (drug-likeness) properties of AL-1 and the selected PBI-based ligands.

The structures of the selected PBI-based ligands can be seen in **Figure S13** in the following; MW = molecular weight; **DonorHB** = number of donor hydrogen bonds; **AccptHB** = number of acceptor hydrogen bonds; **QPlogPo/w** = Predicted octanol/water partition coefficient; **QPPMDCK** = predicted apparent MDCK cell permeability in nm/sec; **CNS** = Predicted central nervous system activity on a -2 (inactive) to +2 (active); **Rule of Five** = Number of violations of Lipinski's rule of five.



Figure S13. Structures of the docked compounds.



**Figure S14**. 3D and 2D of docked pose for the interaction of **AL-1** with the WT EGFR (1M17) (a, b) and the mutant EGFR (4RJ5) (c, d).

| DTVg (DDD Code)                                               | PDGFRa      | PDGFRa_T674I | EGFR WT     | EGFR_T790M / |  |  |  |
|---------------------------------------------------------------|-------------|--------------|-------------|--------------|--|--|--|
| RTKS (PDB Code)                                               | WT (5GRN)   | (6JOI)       | (1M17)      | L858R (4RJ5) |  |  |  |
| Tested ligands                                                |             |              |             |              |  |  |  |
| Crenolanib                                                    | -98.50      | -57.37       | -44.90      | -55.45       |  |  |  |
| Erlotinib                                                     | -           | -            | -58.63      | -48.98       |  |  |  |
| Gefitinib                                                     | -           | -            | -53.77      | -40.56       |  |  |  |
| Imatinib                                                      | -59.60      | -54.48       | -54.87      | -51.40       |  |  |  |
| PDGF receptor<br>tyrosine kinase<br>inhibitor IV <sup>b</sup> | -52.02      | -53.50       | -           | -            |  |  |  |
| tyrosine kinase inhibitor $V^b$                               | -51.11      | -35.06       | -           | -            |  |  |  |
| OMe-PBI                                                       | -28.37      | -44.69       | -45.91      | -38.57       |  |  |  |
| 1PBI                                                          | -98.50      | -42.24       | -41.60      | -36.00       |  |  |  |
| OH-PBI                                                        | -66.63      | -43.51       | -41.74      | -34.90       |  |  |  |
| AL-1                                                          | -79.89      | -43.58       | -51.85      | -39.99       |  |  |  |
| AL-1<br>(post dynamics)                                       | -62.73±1.86 | -61.44±1.30  | -58.82±0.93 | -51.02±1.41  |  |  |  |

**Table S3.** The binding free energies,  $\Delta G$  bind (kcal/mol) of the AL-1 and the selected<br/>compounds against RTKs calculated in MM-GBSA. <sup>a</sup>

<sup>*a*</sup> The structures of the selected compounds can be seen in **Figure S13**.

<sup>*b*</sup> Inhibit PDGFR a and  $\beta$ .



Figure S15. MD simulation pose for the complex containing WT PDGFRa (5GRN) and AL-1.



Figure S16. MD simulation pose for the complex containing mutant PDGFRa (6JOI) and

## AL-1.



Figure S17. MD simulation pose for the complex containing WT EGFR (1M17) and AL-1.



Figure S18. MD simulation pose for the complex containing mutant EGFR (4RJ5) and AL-1.



Figure S19. RMSF for the RTKs complexes with AL-1.



Figure S20. Analysis of the MD trajectories for the interactions (a) and total number of specific contacts (b) of RTK (6JOI) with the ligand AL-1.



Figure S21. Analysis of the MD trajectories for the interactions (a) and total number of specific contacts (b) of RTK (1M17) with the ligand AL-1.



Figure S22. Analysis of the MD trajectories for the interactions (a) and total number of specific contacts (b) of RTK (4RJ5) with the ligand AL-1.



Figure S23. Radii of gyration for the RTKs complexes with AL-1.

### References

- R. G. Correa, P. M. Khan, N. Askari, D. Zhai, M. Gerlic, B. Brown, G. Magnuson, R. Spreafico, S. Albani, E. Sergienko, P. W. Diaz, G. P. Roth and J. C. Reed, *Chem. Bio.*, 2011, 18, 825.
- [2] H.-J. Zhou, J. Wang, B. Yao, S. Wong, S. Djakovic, B. Kumar, J. Rice, E. Valle, F. Soriano, M. Menon, A. Madriaga, S. K. Soly, A. Kumar, F. Parlati, F. M. Yakes, L. Shawver, R. Le Moigne, D. J. Anderson, M. Rolfe and D. Wustrow, *J. Med. Chem.*, 2015, 58, 9480.
- [3] M. Wang, J.-Y. Zhao and X.-F. Jiang, *ChemSusChem*, 2019, **12**, 3064.
- [4] Q. Wang, F.-Y. Liu, S. Qi, Z.-P. Qi, X.-E. Yan, B.-L. Wang, A.-L. Wang, W. Wang, C. Chen, X.-C. Liu, Z.-R. Jiang, Z.-Q. Hu, L. Wang, W.-C. Wang, T. Ren, S.-C. Zhang, C-H. Yun, Q.-S. Liu and J. Liu, *Eur. J. Med. Chem.*, 2018, **150**, 366.
- [5] M. C. Heinrich, D. Griffith, A. McKinley, J. Patterson, A. Presnell, A. Ramachandran and M. Debiec-Rychter, *Clin. Cancer Res.*, 2012, 18, 4375.
- [6] E. J. Hanan, C. Eigenbrot, M. C. Bryan, D. J. Burdick, B. K. Chan, Y. Chen, J. Dotson, R. A. Heald, P. S. Jackson, H. La, M. D. Lainchbury, S. Malek, H. E. Purkey, G. Schaefer, S. Schmidt, E. M. Seward, S. Sideris, C. Tam, S. Wang, S. K. Yeap, I. Yen, J. Yin, C.Yu, I. Zilberleyb and T. P. Heffron, *J. Med. Chem.*, 2014, 57, 10176.
- P. Ballard, R. H. Bradbury, C. S.Harris, L. F. A. Hennequin, M. Hickinson, J. G. Kettle, J. Kendrew, T. Klinowska, D. J. Ogilvie, S. E. Pearson, E. J.Williams and I. Wilsona, *Bioorg. Med. Chem. Lett.*, 2006, 16, 4908.

- [8] N. P. van Erp, H. Gelderblom, M. O. Karlsson, J. Li, M. Zhao, J. Ouwerkerk, J. W. Nortier, H.-J. Guchelaar, S. D. Baker and A. Sparreboom, *Clin. Cancer Res.*, 2007, 13, 406.
- [9] C. Y. Ho, D. W. Ludovici, U. S. M. Maharoof, J. Mei, J. L. Sechler, R. W. Tuman, E. D. Strobel, L. Andraka, H.-K. Yen, G. Leo, J. Li, H. Almond, H. Lu, A. DeVine, R. M. Tominovich, J. Baker, S. Emanuel, R. H. Gruninger, S. A. Middleton, D. L. Johnson and R. A. Galemmo, *J. Med. Chem.*, 2005, **48**, 8163.
- [10] M. A. Morgan, L. A. Parsels, L. E. Kollar, D. P. Normolle, J. Maybaum and T. S. Lawrence, *Clin. Cancer Res.*, 2008, 14, 5142.
- [11] T. Furuta, T. Sakai, T. Senga, T. Osawa, K. Kubo, T. Shimizu, R. Suzuki, T. Yoshino, M. Endo and A. Miwa, *J. Med. Chem.*, 2006, 49, 2186.
- B. D. Palmer, J. B. Smaill, M. Boyd, D. H. Boschelli, A. M. Doherty, J. M. Hamby, S. S. Khatana, J. B. Kramer, A. J. Kraker, R. L. Panek, G. H. Lu, T. K. Dahring, R. T. Winters, H. D. H. Showalter and W. A. Denny, *J. Med. Chem.*, 1998, 41, 5457.