Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supplementary Material (ESI) for New Journal of Chemistry

Supporting Information

Metallosupramolecular polymers formed with silver(I) ion in aqueous solution

Chenxing Li,^{a,†} Mirae Ok,^{a,†} Heekyoung Choi^a and Jong Hwa Jung ^{a,*}

Contents

Methods	S2
Material synthesis	S3
Supplementary Scheme and Figures	S4
References	<i>S11</i>

Methods

General characterization. The ¹H and ¹³C NMR spectra were taken on a Bruker DRX 300, and Bruker DRX 500. Mass spectroscopy samples were analyzed on a JEOL JMS-700 mass spectrometer. The high resolution mass spectra (HR MS) were measured by electrospray ionization (ESI) with a micro TOF Focus spectrometer from SYNAPT G2 (Waters, U.K.). A UV-visible spectrophotometer (Thermo scientific Evolution 600) was used to obtain the absorption spectra. IR spectra were observed over the range 500-4000 cm⁻¹, with a Thermo scientific Nicolet iS 10 instrument.

Preparation of silver complexes. Different concentrations (0, 0.5 and 1.0 equiv.) of Ag^+ solution (water) were added to the ligand L (10.9 mM) solution in a mixture of DMSO and H₂O (1:1 v/v).

SEM observation. FE-SEM images were observed using a JEOL (JSM-7900F). The images of samples using an accelerating voltage 5 kV and an emission current of 8 μ A. Samples were prepared by dropping dilute solution of supramolecular nanostructure formed in a mixture of DMSO and H₂O (1:1 v/v) on glasses following by spinning, drying and coating them with a thin layer of Pt to increase the contrast.

Circular dichroism studies. The CD and UV-vis spectra were recorded on a Jasco J-815 CD spectrophotometer. CD and UV-vis spectra were determined over the range of 200-500 nm using a quartz cell with 0.1 mm path length. Scans were taken at rate of 200 nm/min with a sampling interval of 0.5 nm and response time of 0.5s. The scans were acquired for the supramolecular nanostructure directly at 25 °C.

Calculation of thermodynamic parameter. The thermodynamic parameters governing the supramolecular aggregation of L were obtained by the global fitting of the melting curves. This global fitting is performed by using the equilibrium (EQ) model reported by ten Eikelder and coworkers.¹ The values for the elongation enthalpy (ΔH_e) and the entropy (ΔS_e), and elongation binding constant (K_e) used in the cooperative supramolecular polymerization models were determined by the global fitting of the heating curves,²⁻⁴ which were obtained by plotting the degree of aggregation (α_{agg}) of L (13 mM) without and with AgNO₃ (0.5 and 1.0 equiv.) at 345 nm against temperature with heating experiments. An elongation binding constant (K_e) for aggregation at 293 K was estimated according to eq. 1, from which the enthalpy change (ΔH), and the entropy change (ΔS) were determined:

$$\mathcal{K}_{\rm e} = e^{-(\Delta H_e - T\Delta S)/RT} \qquad (\rm eq. 1)$$

Material synthesis

L was synthesized according to the procedure shown in Scheme S1. All chemical reagents were purchased commercially without further purification, unless otherwise noted.

Synthesis of Compound L2. (*R*)-(–)-2-amino-1-propanol (0.28 g, 3.7 mmol) was put into a stirred suspension of powdered KOH (1.05 g, 18.7 mmol) in dry DMSO (20 mL) at 60 °C. After 30 min, 4'-chloro-2,2':6',2"-terpyridine (1.00 g, 3.7 mmol) was put into the mixture. The mixture was then stirred for 4 h at 70 °C and poured into 600 mL of distilled water thereafter. CH₂Cl₂ (3×200 mL) was used to extract the aqueous phase. Residual water in dichloromethane was dried over Na₂SO₄ and CH₂Cl₂ was removed in vacuum, and the desired product was purified by recrystallization with ethyl acetate to give 0.72 g (72%) of L2. Mp = 118.3 °C; IR (KBr pellet): 3375, 2964, 2926, 2846, 1577, 1565, 1473, 1439, 1403, 1353, 1204, 799 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 8.70 (tdd, *J* = 4.8, 1.8, 0.9 Hz, 2H), 8.62 (dt, *J* = 8.0, 1.1 Hz, 2H), 8.02 (s, 2H), 7.84 (td, *J* = 7.7, 1.8 Hz, 2H), 7.33 (ddd, *J* = 7.4, 4.8, 1.2 Hz, 2H), 4.14 (dd, *J* = 9.0, 4.1 Hz, 1H), 3.94 (dd, *J* = 9.1, 7.6 Hz, 1H), 3.41 (dddd, *J* = 10.6, 7.6, 6.6, 4.2 Hz, 1H), 1.21 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (125 MHz, DMSO-d₆): δ 167.2, 157.1, 155.3, 149.7, 137.9, 125.0, 121.3, 107.3, 75.1, 46.2, 20.43; HR-Mass (m/z) calculated for C₁₈H₁₈N₄O [M]⁺: 306.3690, Found [M]⁺: 306.3690.

Synthesis of Compound L. In a two neck flask, **L2** (0.50 g, 1.64 mmol) and TEA (0.1 mL, 0.72 mmol) were poured into dry CH₂Cl₂ (10 mL). After cooling the solution in an ice bath and magnetically stirring the solution, decanoyl chloride (0.13mL, 0.78 mmol) was added dropwise for reactions. The reactant was stirred for 3 h at room temperature. The crude product was purified by silica gel column chromatography (DCM / MeOH 97 : 3 ν/ν as the eluent) to give a white crystalline solid **L** in 47.44% yield (0.217 g). Mp = 235 °C; IR (ATR): 3297, 2917, 2849, 1637, 1583, 1534, 1468, 1443, 1405, 1359, 1197, 1034, 868, 792, 741, 622 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 8.72 (ddd, *J* = 4.8, 1.8, 0.9 Hz, 2H), 8.65 (dt, *J* = 8.0, 1.1 Hz, 2H), 8.07 (s, *J* = 7.5 Hz, 2H), 7.89 (td, *J* = 1, 7.7, 1.8 Hz, 2H), 7.37 (ddd, *J* = 7.5, 4.8, 1.2 Hz, 2H), 5.78 (s, 1H), 4.52 (m, 1H), 4.29 (dt, *J* = 9.9, 4.6 Hz, 2H), 2.20 (m, 2H), 1.64 (m, 2H), 1.32 (m, 12H), 0.87 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 172.68, 167.03, 155.73, 149.00, 136.99, 124.02, 121.44, 107.39, 70.88, 44.27, 36.95, 31.84, 29.44, 29.36, 29.28, 25.77, 22.66, 17.65, 14.11; HR-Mass (m/z) calculated for C₂₈H₃₆N₄O₂ [M]⁺ : 460.2838, Found [M]⁺ : 460.2838.

Scheme S1 Synthetic method of L.

Table S1. Thermodynamic parameters of L with AgNO₃ (A) 0 equiv., (B) 0.5 equiv. and (C)

1.0	equiv.	in	а	mixture	e of	DM	SO/H ₂ O	(1:1	v/v)	after	72	h.
AgNO3	3 (equiv.)) Δ6	F (kJ	mol ^{_1})	Δ <i>H</i> _e (kJ	mol ^{_1})	Δ <i>S</i> (J K-	⁻¹ mol ⁻¹)	K _e (L	mol ^{_1})	$T_{\rm e}$ (K)
	0		-17.	09	-174	.98	-529	.82	9.9	$\times 10^2$	320.	.03
(0.5		-14.52		-120.38		-355.22		4.5×10^{2}		307.61	
	1		-14.04		-145.63		-441.58		2.9×10^2		304.86	

^{*a*}Gibbs free energy. ^{*b*}Elongation enthalpy. ^{*c*}Entropy. ^{*d*}Elongation binding constant. ^{*e*}Elongation Temperature.

Fig. S1 (A) Chemical structures of (A) ligand L. Proposed structures for complexes (B) $[L_2Ag]^+$ and (C) $[L_2AgNO_3]$.

Fig. S2 HR-ESI-MS spectrum of L (10.9 mM) with AgNO₃ 0.5 equiv. in a mixed H₂O and DMSO (1:1 v/v) after 72 h.

Fig. S3 HR-ESI-MS spectrum of L (10.9 mM) with AgNO₃ 1.0 equiv. in a mixed H₂O and DMSO (1:1 v/v) after 72 h.

Fig. S4 (A) DLS spectrum of of L (10.9 mM) with AgNO₃ 1.0 equiv. in a mixed H₂O and DMSO (1:1 v/v) after 72 h. (B) Plot of DLS spectra change of of L (10.9 mM) with AgNO₃ 1 equiv. in a mixture of H₂O and DMSO (1:1 v/v).

Fig. S5 ¹H NMR spectra of L with AgNO₃ (A) 0 equiv., (B) 0.5 equiv. and (C) 1.0 equiv. in a mixture of D_2O and DMSO-d₆ (1:1 v/v).

Fig. S6 (A) FT-IR spectra of **L** with AgNO₃ (a) 0.5 equiv.(black line) and (b) 1.0 equiv. (red line). (B) FT-IR spectra of (a) AgNO₃ (blue line) and (b) 1.0 equiv. (red line).

Fig. S7 Temperature-dependent UV spectra of different concentrations of **L** with AgNO₃ (A) 0 equiv., (B) 0.5 equiv. and (C) 1.0 equiv. in a mixture of DMSO/H₂O (1:1 v/v) after 72 h.

Fig. S8 ¹H NMR spectrum (300 MHz) of **L2** in CDCl₃ at 25 °C.

Fig. S12 HR EI-MS spectrum of L2 in MeOH.

References

- 1. H. M. M. ten Eikelder, A. J. Markvoort, T. F. A. de Greef and P. A. J. Hilbers, *J. Phys. Chem. B*, 2012, **116**, 5291-5301.
- 2. M. M. J. Smulders, M. M. L. Nieuwenhuizen, T. F. A. de Greef, P. van der Schoot, A. P. H. J. Schenning and E. W. Meijer, *Chem. Eur. J.*, 2010, **16**, 362-367.
- 3. H. Choi, S. Ogi, N. Ando and S. Yamaguchi, J. Am. Chem. Soc., 2021, 143, 2953-2961.
- 4. M. H.-Y. Chan, M. Ng, S. Y.-L. Leung, W. H. Lam and V. W.-W. Yam, J. Am. Chem. Soc., 2017, 139, 8639-8645.